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let M — N be the interior of a small n-cell containing p.) Since X is
(n—2)-connected, H;(X)=0 for 0<i<n—2 and Ho(X)=~Q ([5,
p. 349]). In Cech homology theory on the category of compact pairs
every triad is a proper triad ([3, p. 266]). Therefore, we may apply
the Mayer-Vietoris sequence to the triad (N, (E\VX)N\N, M —E)
and conclude that H;(M —E) =0, for 0<i<n—2, and H((M — E)==(Q.
Since M —E is a proper subset of a connected #-manifold, it follows
that H;(M —E) =0 for :=n. (We assume here that n>0. If =0, the
theorem is trivial.) By Alexander duality, (see [6, p. 263]) since E is
arc-wise connected, H,_1(M — E) =0. Therefore M —E is acyclic and
the theorem follows.
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The family of all topologies definable on an arbitrary set X forms
a complete lattice £ under the partial ordering: 7, <7, if and only if
71C712. The lattice operations A and \/ are defined as: 11 Are=71\7s
and 7,\/7, is the topology generated by the base ® = { B: B=UNU,,
UiEri and U, E7,}. The greatest element, 1, is the discrete topology
and the least element, 0, is the trivial topology. The lattice Z has been
recently studied [2], [3], [4] and has been shown to be comple-
mented [4].
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The family of all 7i-topologies definable on X forms a complete
sublattice A of 2, with greatest element 1, and least element, the
cofinite topology A= {U: U= or X—U is ﬁnite}. However, an
example has been given in [5] to show that A is not a complemented
lattice, unless X is a finite set.

The question as to which T)-topologies have T3-complements has
been studied in [1], [5], [6]. Although large classes of Ti-topologies
have been shown to have T3-complements, the most common spaces
are not included. In fact, the question concerning the real numbers
has been outstanding for some time.

We have shown in [6] that the space of real numbers with the usual
topology has a Ti-complement if any countable dense subspace has a
Ti-complement. The purpose of this paper is to use this fact to pro-
duce a complement for the reals.

Let (R, n) be the real numbers R with the usual topology u, Q be
the rational numbers and D be the dyadic rationals. We now will
define a countable dense subspace X of R.

For each integer &, let Sy ; be a sequence in (Q—D)N { (&, k+1/2) }
which converges to k and let 4o=U{So:|k=0, +1, %2,

For each integer k, let S, be a sequence in (Q—D)M { (k— 1/2 k) }
which converges to k—1/2 and let 4, =U{S1:| k=0, +1, +2,

Since D is countable, D— {r|r=Fk or k+1/2, k an integer} can be
ordered as {di, ds, - - - }. There is a bounded open interval I; con-
taining d; such that IiM(4,\JA4,)=F. Let S; be a sequence in
ILiN(Q—D) converging to di. Suppose S, has been chosen for each
p<n. There is a bounded open interval I, containing d, such that
LN [(AJA)JUS,|p<n})]=. Let S. be a sequence in
I,N\(Q—D) converging to dn.

Let X=DUA0UA1U(U{S,,|n=1, 2, }) and 7 be the relative
topology on X with respect to u.

Define a topology 7’ on X to be the topology generated by sets
of the form:

) {x}, xED,

(ii) U, UEN where \ is the cofinite topology on X,

(iii) B4, =0, 1,

(iv) Cii=1,2, -
where

Bo=AJ{(X—4)NU{[k—1/2,k)|k aninteger})},

Bi=A4,U{(X—4)NU{ [k E+1/2)|Ek an integer})},
and

Ci=SJ{(X—1)ND}.
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We notice that Bo\UB;=X and that CN\C;CD if i##j. Since
AC7’, 7’ is a T1-topology. We will show that 7\/7'=1 and r A7’ =\.

(@) 7V =1. Let x€X. If x€D then {x} E7". If xS, then there
is an open interval U containing x such that UCI; and UNS;= {x}
Thus {x} = (UNX)NC;E7\/7". If x E A, then there is an open inter-
val U containing x such that UC(k, k+1/2) for some k and UNA4,
={x}. Thus {x}=(UNX)NB,E7\/7". A similar argument holds

(b) 7AT'=\. Let UET A7’ and suppose U= . Since UET,
U must contain elements of D; so let x&€DNU. If x=d, for some 7,
then all but a finite number of elements of S, must be in U. Thus
almost all of C,MN B, or almost all of C,M B is contained in U (since
these are the only base elements in 7/, other than C, or members of \,
which contain almost all of S,). But if a cofinite subset of C,M\Bj is in
U then U contains almost all the integers and hence U must contain
a cofinite subset of By since By is the only base element in 7’ contain-
ing the sequences which converge to the integers. But B, contains all
dyadic rationals of the form (2k+1)/2; so a cofinite subset of B; must
be contained in U and therefore UEA.

The other cases where a cofinite subset of C,MNBy is contained in
U or where x©€D — {dy, ds, - - - } are treated in a similar fashion.

Thus 7’ is a Ty-complement for 7 and since X is a countable dense
subset of R, u also has a Ti-complement. The elements of this comple-
ment may be obtained from those in 7’ by following the construction
given in [6].
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