let M-N be the interior of a small *n*-cell containing *p*.) Since X is (n-2)-connected, $H_i(X) = 0$ for $0 < i \le n-2$ and $H_0(X) \cong Q$ ([5, p. 349]). In Čech homology theory on the category of compact pairs every triad is a proper triad ([3, p. 266]). Therefore, we may apply the Mayer-Vietoris sequence to the triad $(N, (E \cup X) \cap N, M-E)$ and conclude that $H_i(M-E) = 0$, for $0 < i \le n-2$, and $H_0(M-E) \cong Q$. Since M-E is a proper subset of a connected *n*-manifold, it follows that $H_i(M-E) = 0$ for $i \ge n$. (We assume here that n > 0. If n = 0, the theorem is trivial.) By Alexander duality, (see [6, p. 263]) since E is arc-wise connected, $H_{n-1}(M-E) = 0$. Therefore M-E is acyclic and the theorem follows.

References

1. R. H. Bing, Retractions onto spheres, Amer. Math. Monthly 71 (1964), 481-484.

2. S. Lefschetz, *Algebraic topology*, Amer. Math. Soc. Colloq. Publ., Vol. 27, Amer. Math. Soc., Providence, R. I., 1942.

3. S. Eilenberg, and N. Steenrod, *Foundations of algebraic topology*, Princeton, Univ. Press, Princeton, N. J., 1952.

4. S.-T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, Mich., 1965.

5. P. J. Hilton and S. Wylie, *Homology theory*, Cambridge Univ. Press, Cambridge, 1962.

6. R. L. Wilder, *Topology of manifolds*, Amer. Math. Soc. Colloq. Publ., Vol. 32, Amer. Math. Soc., Providence, R. I., 1949.

CORNELL UNIVERSITY

A T_1 -COMPLEMENT FOR THE REALS

A. K. STEINER AND E. F. STEINER¹

The family of all topologies definable on an arbitrary set X forms a complete lattice Σ under the partial ordering: $\tau_1 \leq \tau_2$ if and only if $\tau_1 \subseteq \tau_2$. The lattice operations \wedge and \vee are defined as: $\tau_1 \wedge \tau_2 = \tau_1 \wedge \tau_2$ and $\tau_1 \vee \tau_2$ is the topology generated by the base $\mathfrak{G} = \{B: B = U_1 \wedge U_2, U_1 \in \tau_1 \text{ and } U_2 \in \tau_2\}$. The greatest element, 1, is the discrete topology and the least element, 0, is the trivial topology. The lattice Σ has been recently studied [2], [3], [4] and has been shown to be complemented [4].

Received by the editors October 31, 1966.

¹ Research partially supported by the National Science Foundation, Grant GP 6529.

[February

The family of all T_1 -topologies definable on X forms a complete sublattice Λ of Σ , with greatest element 1, and least element, the cofinite topology $\lambda = \{ U: U = \emptyset \text{ or } X - U \text{ is finite} \}$. However, an example has been given in [5] to show that Λ is not a complemented lattice, unless X is a finite set.

The question as to which T_1 -topologies have T_1 -complements has been studied in [1], [5], [6]. Although large classes of T_1 -topologies have been shown to have T_1 -complements, the most common spaces are not included. In fact, the question concerning the real numbers has been outstanding for some time.

We have shown in [6] that the space of real numbers with the usual topology has a T_1 -complement if any countable dense subspace has a T_1 -complement. The purpose of this paper is to use this fact to produce a complement for the reals.

Let (R, μ) be the real numbers R with the usual topology μ , Q be the rational numbers and D be the dyadic rationals. We now will define a countable dense subspace X of R.

For each integer k, let $S_{0,k}$ be a sequence in $(Q-D) \cap \{(k, k+1/2)\}$ which converges to k and let $A_0 = \bigcup \{S_{0,k} | k=0, \pm 1, \pm 2, \cdots \}$.

For each integer k, let $S_{1,k}$ be a sequence in $(Q-D) \cap \{(k-1/2, k)\}$ which converges to k-1/2 and let $A_1 = \bigcup \{S_{1,k} | k=0, \pm 1, \pm 2, \cdots \}$.

Since D is countable, $D - \{r \mid r = k \text{ or } k + 1/2, k \text{ an integer}\}$ can be ordered as $\{d_1, d_2, \cdots\}$. There is a bounded open interval I_1 containing d_1 such that $I_1 \cap (A_0 \cup A_1) = \emptyset$. Let S_1 be a sequence in $I_1 \cap (Q-D)$ converging to d_1 . Suppose S_p has been chosen for each p < n. There is a bounded open interval I_n containing d_n such that $I_n \cap [(A_0 \cup A_1) \cup (\bigcup \{S_p \mid p < n\})] = \emptyset$. Let S_n be a sequence in $I_n \cap (Q-D)$ converging to d_n .

Let $X = D \cup A_0 \cup A_1 \cup (\bigcup \{S_n | n = 1, 2, \dots \})$ and τ be the relative topology on X with respect to μ .

Define a topology τ' on X to be the topology generated by sets of the form:

(i) $\{x\}, x \in D$,

(ii) U, $U \in \lambda$ where λ is the cofinite topology on X,

(iii) B_i , i = 0, 1,

(iv) $C_i, i = 1, 2, \cdots,$

where

 $B_{0} = A_{0} \cup \{ (X - A_{1}) \cap (\bigcup \{ [k - 1/2, k) | k \text{ an integer} \}) \}, \\B_{1} = A_{1} \cup \{ (X - A_{0}) \cap (\bigcup \{ [k, k + 1/2) | k \text{ an integer} \}) \}, \\and \\C_{i} = S_{i} \cup \{ (X - I_{i}) \cap D \}.$

178

We notice that $B_0 \cup B_1 = X$ and that $C_i \cap C_j \subset D$ if $i \neq j$. Since $\lambda \subset \tau', \tau'$ is a T_1 -topology. We will show that $\tau \vee \tau' = 1$ and $\tau \wedge \tau' = \lambda$.

(a) $\tau \vee \tau' = 1$. Let $x \in X$. If $x \in D$ then $\{x\} \in \tau'$. If $x \in S_i$ then there is an open interval U containing x such that $U \subset I_i$ and $U \cap S_i = \{x\}$. Thus $\{x\} = (U \cap X) \cap C_i \in \tau \vee \tau'$. If $x \in A_0$ then there is an open interval U containing x such that $U \subset (k, k+1/2)$ for some k and $U \cap A_0$ $= \{x\}$. Thus $\{x\} = (U \cap X) \cap B_0 \in \tau \vee \tau'$. A similar argument holds if $x \in A_1$.

(b) $\tau \wedge \tau' = \lambda$. Let $U \in \tau \wedge \tau'$ and suppose $U \neq \emptyset$. Since $U \in \tau$, U must contain elements of D; so let $x \in D \cap U$. If $x = d_n$ for some n, then all but a finite number of elements of S_n must be in U. Thus almost all of $C_n \cap B_0$ or almost all of $C_n \cap B_1$ is contained in U (since these are the only base elements in τ' , other than C_n or members of λ , which contain almost all of S_n). But if a cofinite subset of $C_n \cap B_1$ is in U then U contains almost all the integers and hence U must contain a cofinite subset of B_0 since B_0 is the only base element in τ' containing the sequences which converge to the integers. But B_0 contains all dyadic rationals of the form (2k+1)/2; so a cofinite subset of B_1 must be contained in U and therefore $U \in \lambda$.

The other cases where a cofinite subset of $C_n \cap B_0$ is contained in U or where $x \in D - \{d_1, d_2, \cdots\}$ are treated in a similar fashion.

Thus τ' is a T_1 -complement for τ and since X is a countable dense subset of R, μ also has a T_1 -complement. The elements of this complement may be obtained from those in τ' by following the construction given in [6].

References

1. R. W. Bagley, On the characterization of the lattice of topologies, J. London Math. Soc. 29-30 (1955), 247-249.

2. M. P. Berri, The complement of a topology for some topological groups, Fund. Math. 58 (1966), 159-162.

3. H. Gaifman, The lattice of all topologies on a denumerable set, Notices Amer. Math. Soc. 8 (1961), 356.

4. A. K. Steiner, The lattice of topologies: Structure and complementation, Trans. Amer. Math. Soc. 122 (1966), 379–398.

5. ——, Complementation in the lattice of T_1 -topologies, Proc. Amer. Math. Soc. 17 (1966), 884-885.

6. A. K. Steiner and E. F. Steiner, *Topologies with* T_1 -complements, Fund. Math. (to appear).

UNIVERSITY OF NEW MEXICO

1968]