PR-FACTORIZATIONS OF FAMILIES OF LIGHT INTERIOR FUNCTIONS

W. V. CALDWELL

Introduction. A familiar technique used in dealing with problems which fall into a certain class is to find those problems which can be converted into some canonical form which is more easily analyzed. In this paper I shall be considering families of light interior functions defined in a domain \mathcal{D} in E^2 and the canonical forms will be families of Bers functions.

1. Preliminary concepts and definitions. If f is a C^r function, the Jacobian matrix of f will be denoted by $J(f)$ and the determinant of $J(f)$ will be denoted by $|J(f)|$.

Definition 1.1. A C^r function f will be said to be pseudo-regular in \mathcal{D} if (i) $|J(f)| \geq 0$, (ii) $|J(f)| = 0$ if and only if $J(f)$ is the zero matrix, and (iii) the critical points of f are countable and have no limit point in \mathcal{D}. A pseudo-regular function is locally quasiconformal except in a neighborhood of a critical point.

Definition 1.2. A collection \mathcal{W} of light interior functions defined in \mathcal{D} will be called a real linear family if for f_1 and f_2 in \mathcal{W}, $c_1f_1 + c_2f_2$ is in \mathcal{W} for all real c_1 and c_2. \mathcal{W} will be said to be nontrivial if it contains at least two linearly independent elements.

Definition 1.3. A real linear family \mathcal{W} will be called a Bers family if the elements of \mathcal{W} are solutions of a Bers system $U_x = \sigma V_x + \tau V_y$, $-U_y = \sigma V_x - \tau V_y$, where σ and τ are Hölder-continuous real-valued functions and $\sigma > 0$. Elements of a Bers family will be called Bers functions. (Bers [1] calls these functions "pseudoanalytic functions of the second kind").

Definition 1.4. A real linear family \mathcal{W} of light interior functions defined in \mathcal{D} will be said to have a PR-factorization if there exists a homeomorphism h defined in \mathcal{D} and a Bers family \mathcal{W} in $h(\mathcal{D})$ such that if f is in \mathcal{W}, there exists \tilde{f} in \mathcal{W} for which $f = f \circ h$. We denote this PR-factorization by $[h, \mathcal{W}]$.

In an earlier paper [3], I showed that every nontrivial real linear family of pseudo-regular functions has a PR-factorization with h a Beltrami function. Furthermore, this factorization is not unique and if h_1 and h_2 are Beltrami functions satisfying the same Beltrami system

Received by the editors November 16, 1966.

1 This work was supported by the National Science Foundation NSF-GS-4319.
in \mathcal{D} and corresponding to two distinct PR-factorizations of \mathcal{W}, $h_1 \circ h_2^{-1}$ is a conformal mapping of $h_2(\mathcal{D})$ onto $h_1(\mathcal{D})$.

2. Some theorems on PR-factorization. If \mathcal{W} is a Bers family, we may assume that \mathcal{W} contains at least one homeomorphism since every Bers system has homeomorphic solutions. It follows that if \mathcal{W} is a maximal nontrivial real linear family which has a PR-factorization, \mathcal{W} contains at least one homeomorphism. Finally, if \mathcal{W} is a Bers family, \mathcal{W} always has a PR-factorization of the type $[h, \tilde{\mathcal{W}}]$ where h is conformal.

Theorem 2.1. Let \mathcal{W} be a nontrivial real linear family. If \mathcal{W} has a PR-factorization, this PR-factorization is not unique.

Proof. Let $[h, \tilde{\mathcal{W}}]$ be a PR-factorization of \mathcal{W}. Since $\tilde{\mathcal{W}}$ is a Bers family, $\tilde{\mathcal{W}}$ has a PR-factorization $[g, \tilde{\mathcal{W}}]$ where g is conformal. If we define $h' = g \circ h$, $[h', \tilde{\mathcal{W}}]$ is a PR-factorization of \mathcal{W}.

If, in the preceding theorem, we let $h_1 = h$ and $h_2 = h \circ g$, we see that $h_1 \circ h_2^{-1} = g^{-1}$ and $h_2 \circ h_2^{-1} = g$ are conformal. In the general case, $h_1 \circ h_2^{-1}$ will not necessarily be conformal.

Theorem 2.2. Let $[h_1, \mathcal{W}_1]$ and $[h_2, \mathcal{W}_2]$ be PR-factorizations of a nontrivial real linear family \mathcal{W} and let τ_i and σ_i, $i = 1, 2$, be the coefficients of the associated Bers systems. Then $h_1 \circ h_2^{-1}$ is pseudo-regular and if $h_1 \circ h_2^{-1}$ is conformal, $\tau_2 = \tau_1 \circ (h_1 \circ h_2^{-1})$ and $\sigma_2 = \sigma_1 \circ (h_1 \circ h_2^{-1})$.

Proof. Let f_1 be a homeomorphic element of \mathcal{W}_1 and let f_2 be the element of \mathcal{W}_2 such that $f_2 = f_1 \circ (h_1 \circ h_2^{-1})$. f_1 and f_2 are pseudo-regular on their respective domains. Since the composition of pseudo-regular functions is a pseudo-regular function and the inverse of a homeomorphic pseudo-regular function is pseudo-regular, $h_1 \circ h_2^{-1} = f_1^{-1} \circ f_2$ is pseudo-regular. Now let $h_1 \circ h_2^{-1} = p + iq$, let $f_1 = u + iv$, and let $f_2 = r + is$. A simple computation shows that

(2.1) $\tau_1(x, y) = \tau_2(p(x, y), q(x, y)) + A \sigma_2(p(x, y), q(x, y))$

and

(2.2) $\sigma_1(x, y) = B \sigma_2(p(x, y), q(x, y))$

where

(2.3) $A = \frac{s_p s_q (p_x^2 + p_y^2 - q_x^2 - q_y^2) - (s_p^2 - s_q^2)(p_x q_x + p_y q_y)}{s_p^2 (p_x^2 + p_y^2) + 2 s_p s_q (p_x q_x + p_y q_y) + s_q^2 (q_x^2 + q_y^2)}$

and
If \(h_1 \circ h_2^{-1} \) is conformal, \(A = 0 \) and \(B = 1 \).

Since pseudo-regular functions have many properties in common with analytic functions, one might suppose that the theorem on removable singularities could be extended to pseudo-regular functions. This is not true. One can exhibit functions which are homeomorphisms of \(\mathbb{E}^2 \) into \(\mathbb{E}^2 \), have partial derivatives at each point in \(\mathbb{E}^2 \), and are pseudo-regular in the punctured plane but which are not pseudo-regular at the origin. It is apparent from the preceding theorem and from earlier discussions that if \(\mathcal{W} \) has a PR-factorization and if \(\mathcal{W} \) contains a homeomorphic pseudo-regular element, then every element of \(\mathcal{W} \) is pseudo-regular and \(h \) may be taken to be a Beltrami function.

Theorem 2.3. Let \(\mathcal{W} \) be a nontrivial real linear family of light interior functions defined in \(\mathbb{D} \). If \(\mathcal{W} \) has a PR-factorization, either there exists a subset \(E \) of \(\mathbb{D} \) having no limit point in \(\mathbb{D} \) such that every element of \(\mathcal{W} \) is pseudo-regular in \(\mathbb{D} - E \) or \(\mathcal{W} \) contains no pseudo-regular elements.

Proof. Let \([h, \mathcal{W}]\) be a PR-factorization of \(\mathcal{W} \). If \(f \) is a pseudo-regular element of \(\mathcal{W} \), \(h \) is also pseudo-regular except possibly at the critical points of \(f \). Since every element of \(\mathcal{W} \) may be represented as the composition of \(h \) with a Bers function, every element of \(\mathcal{W} \) is pseudo-regular in \(\mathbb{D} - E \) where \(E \) is the set of critical points of \(f \). Finally, since \(f \) is pseudo-regular in \(\mathbb{D} \), \(E \) has no limit point in \(\mathbb{D} \).

Corollary 2.3. Let \(\mathcal{W} \) be a nontrivial real linear family of light interior functions defined in \(\mathbb{D} \). Let \(g \) be a pseudo-regular element of \(\mathcal{W} \), and let \(E \) be the critical points of \(g \). If \(\mathcal{W} \) contains a function which is not pseudo-regular in \(\mathbb{D} - E \), \(\mathcal{W} \) has no PR-factorization.

Proof. Trivial.

A family satisfying the hypotheses of this corollary will be exhibited in the next section.

3. A nontrivial family which has no PR-factorization. If \(f(x, y) = -y + ix \) and \(g(x, y) = x^3 + iy^3 \), \(f \) and \(g \) are \(C' \) homeomorphisms (\(f \) is analytic) and it is easy to verify that \(\alpha f + \beta g \) is a \(C' \) light interior mapping for \(\alpha \) and \(\beta \) arbitrary real numbers. Restricting ourselves for the moment to the open first quadrant, \(f \) and \(g \) determine the first order system

\[
B = \frac{(s_p^2 + s_q^2)(p_u q_v - p_v q_u)}{s_p^2(p_x^2 + p_y^2) + 2s_p s_q(p_u q_x + p_v q_y) + s_q^2(q_x^2 + q_y^2)}.
\]
(3.1) \[U_x = (x^2/y^2)V_y, \quad -U_y = V_x. \]

Obviously, \(f \) and \(g \) are solutions of (3.1). By quite elementary methods, one may obtain a five-parameter family of solutions of (3.1) given by

\[
U = x^{3/2}y^{1/2}\left[C_1I_{1/4}(\alpha y^2) - C_2I_{-1/4}(\alpha y^2) \right]
\cdot \left[C_3J_{-3/4}(\alpha x^2) - C_4J_{3/4}(\alpha x^2) \right],
\]

\[
V = x^{1/2}y^{3/2}\left[C_1I_{3/4}(\alpha y^2) + C_2I_{1/4}(\alpha y^2) \right]
\cdot \left[C_3J_{1/4}(\alpha x^2) + C_4J_{-1/4}(\alpha x^2) \right]
\]

where \(C_1, C_2, C_3, \) and \(C_4 \) are arbitrary real numbers, \(\alpha \) is any positive real number, \(J_p \) is the Bessel function of order \(p \), and \(I_p \) is the modified Bessel function of the first kind of order \(p \). Note that \(U, V, \) and their partial derivatives have at most removable discontinuities at \(x=0 \) and \(y=0 \) and are continuous for all other values of \(x \) and \(y \). Furthermore,

\[
U_xV_y - U_yV_x = V_x^2 + \frac{x^2}{y^2}V_y^2
\]

\[
= 4\alpha^2x^3y^3\left[C_1I_{-3/4}(\alpha y^2) + C_2I_{3/4}(\alpha y^2) \right]^2
\cdot \left[C_3J_{-3/4}(\alpha x^2) - C_4J_{3/4}(\alpha x^2) \right]^2
+ 4\alpha^2xy\left[-C_1I_{1/4}(\alpha y^2) + C_2I_{-1/4}(\alpha y^2) \right]^2
\cdot \left[C_3J_{1/4}(\alpha x^2) + C_4J_{-1/4}(\alpha x^2) \right]^2
\]

is nonnegative and bounded for all finite values of \(x \) and \(y \). If \(\mathcal{W} \) consists of \(f, g, \) and functions of the form \(u + iv \) where the pair \((u, v) \) satisfy (3.1), it contains a pseudo-regular function and functions which are not pseudo-regular.

References

University of Michigan