A LOWER BOUND FOR THE FIRST EIGENVALUE OF SECOND ORDER ELLIPTIC OPERATORS

H. OGAWA AND M. H. PROTTER

Let L be the second order operator

$$L = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i(x) \frac{\partial}{\partial x_i} + c(x),$$

where the matrix (a_{ij}) is symmetric and positive definite in a bounded domain D. The coefficients are assumed to be real and so smooth that the adjoint operator L^* has continuous coefficients on D. Let f and ϕ be positive functions on D. By the methods of Hooker [1] and Protter [2], it can be shown that the lowest eigenvalue λ_1 of the problem

(1) $Lu + \lambda fu = 0$ in D,
(2) $u = 0$ on ∂D,

satisfies the inequality

$$\text{Re} \, \lambda_1 \geq \inf_{D} \left(- (L\phi + L^*\phi)/2f\phi \right).$$

If L is selfadjoint, the inequality reduces to the extension of the inequality of Barta

$$\text{Re} \, \lambda_1 \geq \inf_{D} (- L\phi/f\phi),$$

which Protter and Weinberger [3] recently established for nonselfadjoint second order elliptic operators.

The purpose of this paper is to show that the inequality (3) can be generalized to

$$\text{Re} \, \lambda_1 \geq \inf_{D} \left[- \frac{1}{2f} \left(\frac{L\phi}{\phi} + \frac{L^*\psi}{\psi} \right) \right]$$

for arbitrary positive functions ϕ and ψ of class $C^2(D)$. Furthermore, we shall show that (4) also holds under more general boundary conditions, provided additional conditions are imposed on ϕ and ψ at the boundary. Such problems were studied by Hooker [1].

Let g and h be nonnegative functions on ∂D such that $g^2 + h^2 > 0$.

Received by the editors December 29, 1966.

1 This work was supported by the National Science Foundation and the Air Force Office of Scientific Research.
We shall impose a boundary condition of the form
\begin{equation}
Bu = gu + h \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial D,
\end{equation}
where $\frac{\partial u}{\partial \nu}$ denotes the conormal derivative associated with the operator L; i.e.,
\[
\frac{\partial}{\partial \nu} = \sum_{i,j} a_{ij} n_i \frac{\partial}{\partial x_j},
\]
where n_i denotes the component of the outward unit normal to ∂D in the direction x_i. We shall also employ the adjoint boundary operator defined by
\[
B^* = g + h(k + \partial/\partial \nu),
\]
where
\[
k = \sum_{i,j} \frac{\partial}{\partial x_j} (a_{ij}) n_i - \sum_i b_i n_i.
\]

Theorem. Let ϕ and ψ be positive functions of class $C^2(\overline{D})$ satisfying
\begin{equation}
(B\phi/\phi) + (B^*\psi/\psi) = 0 \quad \text{on } \partial D.
\end{equation}
Then the lowest eigenvalue of the problem (1), (5) satisfies the inequality (4).

Proof. Let v be a positive function of class $C^2(\overline{D})$ and set
\[
I(v, \lambda) = -\frac{1}{2} \int_D [\bar{u}(Lu + \lambda \delta u) + u(L\bar{u} + \lambda \delta \bar{u})] dx.
\]
Several applications of Green's Theorem yield
\begin{equation}
I(v, \lambda) = \int_D \left\{ v \sum_{i,j} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \bar{u}}{\partial x_j} - \left[\frac{1}{2} L^* v + \frac{1}{2} \delta v + (\Re \lambda) \delta v \right] |u|^2 \right\} dx
\end{equation}
\begin{equation}
+ \int_{\partial D} \left[\frac{1}{2} |u|^2 \left(\frac{\partial v}{\partial \nu} + kv \right) - \frac{1}{2} v \frac{\partial}{\partial \nu} |u|^2 \right] dS.
\end{equation}
If P_i, $i=1, 2, \cdots, n$, are functions of class $C^1(\overline{D})$, then
\[
\int_D \sum_i \frac{\partial}{\partial x_i} (P_i |u|^2) dx - \int_{\partial D} |u|^2 \sum_i P_i n_i dS = 0.
\]
Adding this to (7), we obtain
\[I(v, \lambda) = \int_D \left\{ v \sum_{i,j} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial \bar{u}}{\partial x_j} + \sum_i P_i \left(u \frac{\partial \bar{u}}{\partial x_i} + \bar{u} \frac{\partial u}{\partial x_i} \right) - \left[\frac{1}{2} L^*v + \frac{1}{2} cv + (\text{Re} \, \lambda)f_v - \sum_i \frac{\partial P_i}{\partial x_i} \right] |u|^2 \right\} dx \]

\[+ \int_{\partial D} \left[\frac{1}{2} |u|^2 \left(\frac{\partial v}{\partial \nu} + kv \right) - \frac{1}{2} v \frac{\partial}{\partial \nu} |u|^2 - |u|^2 \sum_i P_i n_i \right] dS. \]

For \(\phi \) and \(\psi \) positive functions of class \(C^2(\bar{D}) \), an easy computation yields

\[\frac{1}{2} L^* \left(\frac{\psi}{\phi} \right) + \frac{1}{2} c \frac{\psi}{\phi} = \frac{\psi}{\phi} \left(\frac{1}{2} \frac{L \phi}{\phi} + \frac{1}{2} \frac{L^* \psi}{\psi} \right) - \sum_{i,j} \left[\frac{\partial}{\partial x_i} \left(\frac{a_{ij} \psi \frac{\partial \phi}{\phi^2}}{\phi^2} \frac{\partial}{\partial x_j} + \frac{a_{ij} \phi \frac{\partial \psi}{\phi^2}}{\phi^3} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \right) \right]. \]

Thus, if we set \(v = \psi / \phi \) and

\[P_i = -\frac{\psi}{\phi} \sum_j a_{ij} \frac{\partial \phi}{\partial x_j} \]

and make use of the boundary condition (5), the equation (8) assumes the form

\[I \left(\frac{\psi}{\phi}, \lambda \right) = \int_D \frac{\psi}{\phi} \left\{ \sum_{i,j} a_{ij} \left(\frac{\partial u}{\partial x_i} - u \frac{\partial \phi}{\phi} \right) \left(\frac{\partial \bar{u}}{\partial x_j} - \bar{u} \frac{\partial \phi}{\phi} \right) - \left[\frac{1}{2} \frac{L \phi}{\phi} + \frac{1}{2} \frac{L^* \psi}{\psi} + (\text{Re} \, \lambda)f \right] \right\} dx \]

\[+ \int_{\Sigma} \frac{\psi}{\phi} \frac{1}{2 \phi h} \left(\frac{B \phi}{\phi} + \frac{B^* \psi}{\psi} \right) dS, \]

where \(\Sigma \) is the subset of \(\partial D \) on which \(h \) is positive. Hence, because of the hypothesis (6), if \(\lambda \) is chosen so that

\[\frac{1}{2} (L \phi / \phi + L^* \psi / \psi) + (\text{Re} \, \lambda)f < 0, \]

then \(I(\psi / \phi, \lambda) \) is positive for all \(u \) not identically zero. Consequently, \(\lambda \) is not an eigenvalue and the theorem is proved.

For the case of Dirichlet boundary data, we have \(h = 0, g = 1 \), and hence condition (6) is satisfied for arbitrary positive functions \(\phi \) and \(\psi \).

Finally, we note that a generalization of (4) involving a finite num-
ber of pairs of positive functions, ϕ_k and ψ_k, can be found by considering the sum $\sum I(\psi_k/\phi_k, \lambda)$.

Bibliography

University of California, Riverside and University of California, Berkeley