ON THE TRANSFORM OF A SINGULAR OR AN ABSOLUTELY CONTINUOUS MEASURE

RAOUF DOSS

Let \(G \) be a locally compact abelian group with dual \(\Gamma \). A well-known theorem of Bochner [1], generalized by Eberlein [2], is the following:

"A continuous function \(\varphi \) defined on \(\Gamma \) is the Fourier-Stieltjes transform of a finite (regular) measure on \(G \) if and only if there is a constant \(A \) such that for every trigonometric polynomial

\[
p(x) = \sum c_i(-x, \gamma_i), \quad \gamma_i \in \Gamma,
\]

the relation \(\|p\| \leq 1 \) implies \(|\sum c_i \varphi(\gamma_i)| \leq A.\)"

If we take \(A = \sup |\sum c_i \varphi(\gamma_i)| \) where the sup is over all polynomials \(p \) for which \(\|p\| \leq 1 \), then whatever be \(\epsilon > 0 \), there is a polynomial

\[
p(x) = \sum c_i(-x, \gamma_i), \quad \gamma_i \in \Gamma,
\]
such that \(\|p\| \leq 1 \) and \(|\sum c_i \varphi(\gamma_i)| > A - \epsilon.\)

A splitting of the last property gives very simple (mutually exclusive) characterizations of the transform of a singular or an absolutely continuous measure. We prove the following theorems:

THEOREM 1. A continuous function \(\varphi \) defined on \(\Gamma \) is the Fourier-Stieltjes transform of a singular measure on \(G \) if and only if there is a constant \(A \) such that

(i) for every trigonometric polynomial \(p(x) = \sum c_i(-x, \gamma_i), \gamma_i \in \Gamma \), the relation \(\|p\| \leq 1 \) implies \(|\sum c_i \varphi(\gamma_i)| \leq A; \)

(ii) whatever be \(\epsilon > 0 \) and the compact set \(K \) in \(\Gamma \) there is a polynomial

\[
p(x) = \sum c_i(-x, \gamma_i), \quad \gamma_i \in \Gamma, \gamma_i \in K,
\]
such that \(\|p\| \leq 1 \) and \(|\sum c_i \varphi(\gamma_i)| > A - \epsilon.\)

THEOREM 2. A continuous function \(\varphi \) defined on \(\Gamma \) is the transform of an absolutely continuous measure on \(G \) if and only if

(i) there is a constant \(A \) such that for every polynomial

\[
p(x) = \sum c_i(-x, \gamma_i), \quad \gamma_i \in \Gamma,
\]

the relation \(\|p\| \leq 1 \) implies \(|\sum c_i \varphi(\gamma_i)| \leq A; \)

Received by the editors January 1, 1967.

361
(iia) whatever be \(\epsilon > 0 \) there is a compact set \(K \) in \(\Gamma \) such that for every polynomial \(p(x) = \sum c_i(-x, \gamma_i) \), \(\gamma_i \in \Gamma \), \(\gamma_i \in K \), the relation \(\|p\|_\infty \leq 1 \) implies \(\left| \sum c_i \phi(\gamma_i) \right| < \epsilon \).

Proof of Theorem 1.

Necessity of (iia). Let \(\varphi(\gamma) = \mu_\epsilon(\gamma) \) where \(\mu_\epsilon \) is singular and \(\|\mu_\epsilon\| = A \). Let \(\epsilon > 0 \) and the compact set \(K \) in \(\Gamma \) be given. There is a polynomial

\[
r(x) = \sum_{j=1}^N b_j(-x, \gamma_j'), \quad \gamma_j' \in \Gamma,
\]

such that \(\|r\|_\infty \leq 1 \) and \(\left| \sum b_j \mu_\epsilon(\gamma_j') \right| = \left| \int \sigma r(x) d\mu_\epsilon(x) \right| > A - \epsilon \).

The set \(C = \{-\gamma_1', \ldots, -\gamma_N'\} \cup -K \) being compact, there is a \(\hat{k} \in L^1(G) \) such that \(\hat{k}(\gamma) = 1 \) on \(C \); i.e., \(\hat{k}(-\gamma_j') = 1, j = 1, \ldots, N \), and \(\hat{k}(-\gamma) = 1 \) for \(\gamma \in K \) and such that \(\|\hat{k}\|_1 < 1 + \epsilon \) (see, e.g., [3, p. 53]). Put \(k'(x) = \hat{k}(-x) \) and \(f(x) = (k' \ast \mu_\epsilon)(x) \). Then \(f \in L^1(G) \) and \(\hat{f}(\gamma) = \hat{k}(-\gamma) \mu_\epsilon(\gamma) \) for \(\gamma \in \Gamma \). Also

\[
\left| \int_G r(x) f(x) dx \right| = \left| \sum b_j \hat{f}(\gamma_j') \right| = \left| \sum b_j \hat{k}(-\gamma_j') \mu_\epsilon(\gamma_j') \right|
\]

\[
= \left| \sum b_j \mu_\epsilon(\gamma_j') \right| > A - \epsilon.
\]

Hence \(\|f\|_1 > A - \epsilon \).

Now consider the measure \(d\mu = d\mu_\epsilon - f(x) dx \). We have \(\|\mu\| = \|\mu_\epsilon\| + \|f\|_1 > 2A - \epsilon \). Hence there exists a polynomial \(q(x) = \sum d_i(-x, \gamma_i) \) such that \(\|q\|_\infty \leq 1 \) and \(\left| \sum d_i \mu_\epsilon(\gamma_i) \right| > 2A - \epsilon \). Put \(p(x) = \frac{1}{2} [q(x) - (q \ast \hat{k})(x)] \). Then

\[
(1) \quad p(x) = \sum c_i(-x, \gamma_i)
\]

where \(c_i = \frac{1}{2} [d_i - d_i \hat{k}(-\gamma_i)] \) so that

\[
(2) \quad c_i = 0 \quad \text{for} \quad \gamma_i \in K.
\]

Also,

\[
(3) \quad \|p\|_\infty \leq \frac{1}{2} \left(1 + \frac{1}{2} (1 + \epsilon) \right) = 1 + \epsilon/2.
\]

Now

\[
\sum c_i \mu_\epsilon(\gamma_i) = \frac{1}{2} \sum [d_i \mu_\epsilon(\gamma_i) - d_i \mu_\epsilon(\gamma_i) \hat{k}(-\gamma_i)]
\]

\[
= \frac{1}{2} \sum d_i [\mu_\epsilon(\gamma_i) - \hat{f}(\gamma_i)] = \frac{1}{2} \sum d_i \mu_\epsilon(\gamma_i).
\]

Hence

\[
(4) \quad \left| \sum c_i \mu_\epsilon(\gamma_i) \right| > A - \epsilon/2.
\]

Since \(\epsilon > 0 \) is arbitrary, relations (1) and (2), (3) and (4) prove the necessity of (iia).
Sufficiency of (i) and (iis). We know already by Bochner’s theorem that \(\varphi \) is the transform of a regular finite measure \(\mu \), where \(\|\mu\| = A \). We show that \(\mu \) is singular. Let \(d\mu = d\mu_s + g(x)dx \) be the Lebesgue decomposition of \(\mu \). \(\epsilon > 0 \) being given, there is an \(h \in L^1(G) \), whose transform \(\hat{h} \) vanishes outside some compact set \(K \), and such that \(\|g - h\|_1 < \epsilon \). Put \(dv = dv - h(x)dx = d\mu_s + (g - h)dx \). Then \(\vartheta(\gamma) \) coincides with \(\varphi(\gamma) \) outside \(K \). Put \(A_s = \|\mu_s\| \). By (iis) there is a polynomial

\[
p(x) = \sum c_i(x, \gamma_i), \quad \gamma_i \in K,
\]
such that \(\|p\|_\infty \leq 1 \) and \(\|\sum c_i(g(\gamma_i) - \hat{h}(\gamma_i)) + \sum c_i\mu_s(\gamma_i)\| > A - \epsilon \). The l.h.s. is at most \(A_s + \epsilon \). Therefore, \(A_s + \epsilon \geq A - \epsilon \), i.e., \(A_s \geq A - 2\epsilon \). Since \(A_s \leq A \) we conclude \(A_s = A \) and therefore \(\|g\|_1 = 0 \). Thus \(\mu \) is singular and the proof is complete.

Proof of Theorem 2.

Necessity of (iia). Let \(\varphi \) be the transform \(\hat{f} \) of some \(f \in L^1(G) \) and let \(\epsilon > 0 \) be given. There is a \(k \in L^1(G) \) with compact support \(K \), such that \(\|f - f * k\|_1 < \epsilon \). If now \(p(x) = \sum c_i(-x, \gamma_i), \gamma_i \in \Gamma, \gamma_i \in K \) with \(\|p\|_\infty \leq 1 \), then, for \(p'(x) = p(-x) \),

\[
\left| \sum c_i \varphi(\gamma_i) \right| = \left| \sum c_i \hat{f}(\gamma_i) \right| = \left| \sum c_i(\hat{f}(\gamma_i) - \hat{k}(\gamma_i)\hat{f}(\gamma_i)) \right| = \left| (\hat{p}' * (f - k * f))(0) \right| \leq \|\hat{p}'\|_\infty \|f - k \ast f\|_1 < \epsilon.
\]

This proves the necessity of (iia).

Sufficiency of (i) and (iia). We know already that \(\varphi \) is the transform \(\hat{\mu} \) of some finite measure on \(G \). Let \(d\mu = d\mu_s + f(x)dx \) be the Lebesgue decomposition of \(\mu \). Put \(A_s = \|\mu_s\| \). Let \(\epsilon > 0 \) be given. Let \(K_1 \) be the compact set in \(\Gamma \) associated to \(\epsilon \) by (iia), and let \(K_2 \) be the compact set associated to \(\epsilon \) and the absolutely continuous measure \(f(x)dx \) by the necessity just proved. Put \(K = K_1 \cup K_2 \). By Theorem 1 there is a polynomial \(p(x) = \sum c_i(-x, \gamma_i), \gamma_i \in \Gamma, \gamma_i \in K \), such that \(\|p\|_\infty \leq 1 \) and \(\|\sum c_i \mu_s(\gamma_i)\| > A_s - \epsilon \). Also, \(\|\sum c_i \varphi(\gamma_i)\| < \epsilon \) since \(K_1 \subset K \) and \(\|\sum c_i \hat{f}(\gamma_i)\| < \epsilon \) since \(K_2 \subset K \). We conclude

\[
A_s - \epsilon < \left| \sum c_i \mu_s(\gamma_i) \right| = \left| \sum c_i \varphi(\gamma_i) - \hat{f}(\gamma_i) \right| < 2\epsilon,
\]
i.e., \(A_s < 3\epsilon \). Since \(\epsilon \) is arbitrary, we conclude \(A_s = 0 \) so that \(d\mu_s = 0 \) and \(\mu \) is absolutely continuous. This completes the proof of the theorem.

References

State University of New York, Stony Brook