ADDITIVE FUNCTIONALS ON $C(Y)^1$

J. KUELBS

1. Introduction. In [1] and [2] Cameron and Graves provide an interesting characterization of the class of additive Wiener measurable functionals on the space C of real valued continuous functions on $[0, 1]$ which vanish at zero. The purpose of this paper is to obtain a similar characterization for additive measurable functionals on $C(Y)$ when Y is the product space $\prod_{k=1}^{\infty} [a_k, b_k]$. It is assumed that Y has the product topology, that $b_k - a_k = O(2^{-j})$, and that $C(Y)$ denotes the real continuous functions on Y with the uniform topology. The measure on $C(Y)$ is the Gaussian measure m defined in [3].

Since the class of open subsets of $C(Y)$ is m-measurable it follows that continuous functionals are measurable and, in particular, that bounded linear functionals on $C(Y)$ will have our representation. In Theorems 2 and 3 the relationship between the Riesz representation and our representation for bounded linear functionals is determined. In §4 it is shown that certain additive functionals on $C(X)$, where X is a compact metric space, also have our representation.

2. Preliminary results. Let $Y_n = \prod_{k=1}^{n} [a_k, b_k] \times \alpha_n$ where $\alpha_n = (a_{n+1}, a_{n+2}, \ldots)$ for $n = 1, 2, \ldots$, and by S_n denote the 2^n subsets of Y_n formed by selecting $n-k$ of the first n coordinates and setting each such x_j equal to a_j while the remaining k coordinates among the first n are allowed to vary as they do in Y_n. The symbol S denotes $\bigcup_{n=1}^{\infty} S_n$. If $I \in S$ and I has $k > 0$ coordinates which vary, then μ_I denotes Lebesgue measure on I when I is considered as k-dimensional. If I is the single point (a_1, a_2, \ldots), then μ_I is the measure obtained by placing mass one at this point.

If B is a Borel subset of Y, we define $\nu(B) = \sum_{I \in S} \mu_I(B \cap I)$. Then ν is sigma-additive on the Borel sets and $C(Y)$ is dense in $L_2(Y)$ with respect to mean square convergence. In fact, polynomials in finitely many coordinates of Y with rational coefficients are dense in $L_2(Y)$, and, as a result, a countable orthonormal basis of polynomials exists for $L_2(Y)$.

Let $\{\phi_k(p)\}$ be a complete orthonormal set in $L_2(Y)$ each of which is a polynomial in a finite number of variables. If $g \in L_2(Y)$ and $g_n(p) = \sum_{k=1}^{n} c_k \phi_k(p)$ where $c_k = \int_Y g \phi_k dv$, then, as is shown in [3], the P.W.Z. (Paley, Wiener, Zygmund) integral $\int_Y g(df)^- = \lim_n \int_Y g_n df$.

Received by the editors December 23, 1966.

1 Supported in part by NSF Grant GP-3483.
exists for almost all f in $C(Y)$. Here by $\int_Y g_n(df)$ we mean $\sum_{t \in S} \int g_n(df)$ where $\int g_n(df)$ denotes the ordinary Riemann-Stieltjes integral of g_n with respect to f over I when g_n and f are thought of as functions on I. The existence of $\int_Y g_n(df)$ for almost all f in $C(Y)$ and the fact that $\int_Y g_n(df)$ is a Gaussian functional with mean zero and variance $\frac{1}{2} \int_Y g_n^2(dv)$ is assured by results in [3]. It is also shown in [3] that $\int_Y g(df)^\sim$ is a Gaussian functional with expectation zero and variance $\frac{1}{2} \int_Y g^2(dv)$ which is independent of the complete orthonormal set $\{\phi_k(p)\}$ provided each ϕ_k is a polynomial in a finite number of variables. Consequently, if g_1, \ldots, g_n are orthonormal elements of $L_2(Y)$, then $\int_Y g_1(df)^\sim, \ldots, \int_Y g_n(df)^\sim$ form an independent family of Gaussian functionals with mean zero and variance one-half.

In [4] Cameron and Martin introduced a complete orthonormal set of functionals in $L_2(C)$ where C is as in the Introduction and the measure on C is Wiener measure. In a similar fashion one can introduce a complete orthonormal set of functionals for the space of square integrable functionals L_2 on $C(Y)$.

Let $H_n(u)$ be the partially normalized Hermite polynomial

$$(-1)^n 2^{-n/2} (n!)^{-1/2} e^{-u^2} \frac{d^n}{du^n} (e^{-u^2}) \quad \text{for } n = 0, 1, 2, \ldots .$$

If $\{\phi_p(p)\}$ is any orthonormal basis for $L_2(Y)$, we define

\begin{align*}
(2.1) \quad & \Phi_{m,k}(f) = H_m \left(\int_Y \phi_k(df)^\sim \right), \quad m = 0, 1, \ldots, k = 1, 2, \ldots, \\
(2.2) \quad & \Psi_{m_1, \ldots, m_k}(f) = \Phi_{m_1,1}(f) \cdots \Phi_{m_k,k}(f).
\end{align*}

Since $H_0(u) = 1$ it follows that $\Phi_{0,k}(f) = 1$ and $\Psi_{m_1, \ldots, m_k,0,0,\ldots,0}(f) = \Psi_{m_1, \ldots, m_k}(f)$. By $\{\Psi_\alpha\}$ we will denote the set of functionals of the form (2.2) where α is any finite sequence of nonnegative integers. Then $\{\Psi_\alpha\}$ is a complete orthonormal subset for L_2. That is, if F is in L_2, then

$$\lim_{N \to \infty} E \left[F(f) - \sum_{m_1, \ldots, m_N=0} A_{m_1, \ldots, m_N} \Psi_{m_1, \ldots, m_N}(f) \right]^2 = 0$$

where $A_{m_1, \ldots, m_N} = E[F(f)\Psi_{m_1, \ldots, m_N}(f)]$ and by $E(\cdot)$ we mean integration with respect to the measure m on $C(Y)$. The proof of this can be carried out with only a few minor modifications to the proof of the corresponding result in [4].

Henceforth we will assume $\{\phi_k(p)\}$ is a complete orthonormal set for $L_2(Y)$ and that each is a polynomial in a finite number of variables. Using the Fourier-Hermite expansion for functionals in L_2 men-
tioned above and the translation theorem of [3] for the measure \(m \) on \(C(Y) \) it is possible by application of the techniques of Cameron and Graves found in [1] and [2] to prove the following lemma.

Lemma 1. Let \(F(f) \) be measurable and additive on \(C(Y) \). Let \(\{\phi_k(p)\} \) be the complete orthonormal set of polynomials for \(L_2(Y) \) used in the definition of the Fourier-Hermite functionals and set \(\theta_k(p) = \int_Y (p)\phi_k dv \) where \(Y(p) = \prod_{k=1}^n [a_k, x_k] \) if \(p = (x_1, x_2, \ldots) \). Then \(\sum_{k=1}^\infty |F(\theta_k)|^2 < \infty \) and, for almost all \(f \) in \(C(Y) \),

\[
F(f) = \sum_{k=1}^\infty F(\theta_k) \int_Y \phi_k df.
\]

(2.3)

3. The representation theorem and its relationship to the integral representation of Riesz. A functional \(F \) will be called essentially additive, homogeneous, or linear if it is almost everywhere equal to a functional which is additive, homogeneous, or linear, respectively.

Theorem 1. A measurable function \(F \) is essentially additive on \(C(Y) \) iff for almost all \(f \) in \(C(Y) \)

\[
F(f) = \int_Y h(df) ~
\]

where \(h \) is in \(L_2(Y) \).

Proof. Since \(F \) is measurable and essentially additive there exists an additive measurable functional \(G \) on \(C(Y) \) such that \(F(f) = G(f) \) almost everywhere. Now by (2.3)

\[
G(f) = \sum_{k=1}^\infty G(\theta_k) \int_Y \phi_k df
\]

almost everywhere and \(\sum_{k=1}^\infty |G(\theta_k)|^2 < \infty \). Let

\[
h = \lim_{N} \sum_{k=1}^{N} G(\theta_k) \phi_k,
\]

then by definition \(\int_Y h(df) ~ = \lim_{N} \int_Y g_N df \) where \(g_N = \sum_{k=1}^{N} c_k \phi_k \) and \(c_k = \int_Y \phi_k dv = G(\theta_k) \). That is, \(\int_Y h(df) ~ = \sum_{k=1}^\infty G(\theta_k) \int_Y \phi_k df = G(f) \) for almost all \(f \) and hence (3.1) holds for \(F \) almost surely.

Suppose \(F(f) = \int_Y h(df) ~ \) almost surely for some \(h \) in \(L_2(Y) \). Since \(\int_Y h(df) ~ \) is linear on a linear subspace of \(C(Y) \) of measure one it follows that \(\int_Y h(df) ~ \) can be extended to be linear on all of \(C(Y) \). Hence \(F(f) \) is essentially linear on \(C(Y) \) and the theorem is proved.

Corollary. If \(F \) is measurable and essentially additive on \(C(Y) \),
then F is essentially linear and has a Gaussian distribution with mean zero and variance $\frac{1}{2} \int_Y h^2 dv$ when F is as in (3.1).

Proof. The fact that F is essentially linear appears in the proof of Theorem 1. To see that $F(f)$ has the indicated Gaussian distribution simply observe that $F(f) = \int_Y h(df)^\sim$ almost everywhere for some $h \in \mathcal{L}_1(Y)$. Now $\int_Y h(df)^\sim = \lim_n \int_Y g_n df$ where $g_n = \sum_{k=1}^{n} c_k \phi_k$ and $c_k = \int_Y h \phi_k dv$, and since $\{c_k \int_Y \phi_k df\}$ is a sequence of independent Gaussian functionals with mean zero and variance $c_k^2/2$ the result follows.

If $F(f)$ is a bounded linear functional on $C(Y)$, then the Riesz representation theorem asserts that there exists a finite signed measure μ on the Borel subsets \mathcal{B} of Y such that $F(f) = \int_Y f d\mu$ for all $f \in C(Y)$. On the other hand, $F(f) = \int_Y h(df)^\sim$ for almost all f in $C(Y)$ where h is in $\mathcal{L}_1(Y)$. We now proceed to relate the measure μ and the function h.

If μ is a finite signed measure on \mathcal{B} and τ is a continuous function of Y into Y, then for every $B \in \mathcal{B}$ we have $\tau^{-1}(B) \in \mathcal{B}$ and we define μ^τ to be the measure on \mathcal{B} such that $\mu^\tau(B) = \mu(\tau^{-1}(B))$ for $B \in \mathcal{B}$.

By τ_n we mean the projection of Y onto Y_n for $n = 1, 2, \ldots$. That is, $\tau_n(x_1, \ldots, x_n, x_{n+1}, \ldots) = (x_1, \ldots, x_n, a_{n+1}, \ldots)$ for all p in Y. Now τ_n is continuous and hence $\mu_n = \mu^\tau_n$ is a finite signed measure on Y concentrated in Y_n.

Lemma 2. If f is in $C(Y)$, then

$$
\lim_{n \to \infty} \int_Y f d\mu_n = \int_Y f d\mu.
$$

Proof. First observe that

$$
\int_Y f(\phi) d\mu_n = \int_Y f(\phi) d\mu^\tau_n = \int_Y f(\tau_n(\phi)) d\mu \quad \text{for } n = 1, 2, \ldots.
$$

Then since $f \in C(Y)$ and τ_n converges uniformly to the identity map, we have

$$
\lim_{n \to \infty} \int_Y f(\phi) d\mu_n = \int_Y f(\phi) d\mu.
$$

Since μ_n is a finite signed measure concentrated in Y_n it follows from [5, p. 288] that there exists a unique function H_n on Y_n such that

1. H_n is bounded and of bounded variation on all $I \in S_n$,
2. $H_n(p) = 0$ if any $x_k = b_k$ when $p = (x_1, \ldots, x_n, a_{n+1}, \ldots)$,
3. H_n is left continuous on Y_n except possibly for points p.
On the other hand, the existence of an H_n satisfying (1), (2), and (3) implies the existence of a measure μ_n concentrated on the Borel subsets of Y_n such that (4) holds. We extend H_n to be zero on $Y - Y_n$. Since $H_n = 0$ on $Y - Y_n$ it follows that

$$\int_Y (-1)^n H_n df = \sum_{I \in B_n} \int_I (-1)^n H_n df = \sum_{I \in B_n} \int_I (-1)^n H_n df.$$

Now by the integration by parts formula given in [6, p. 415] and the fact that $H^n(p) = 0$ for all $p = (x_1, \ldots, x_n, a_{n+1}, \ldots)$ when some $x_k = b_k$ for $k = 1, \ldots, n$, we obtain $\int_Y (-1)^n H_n df = \int_{Y_n} f dH_n$. It is now possible to relate the Riesz representation of a bounded linear functional and the representation provided in (3.1). In the next theorem we assume $\mu_n = \mu^n$ and that $H_n(p)$ is related to μ_n as above.

Theorem 2. If F is a bounded linear functional on $C(Y)$ such that $F(f) = \int_Y f d\mu$ where μ is a finite signed measure on \mathcal{B}, then $F(f) = \int_Y h(df)$ for almost all f in $C(Y)$ where $h \in \mathcal{L}_2(Y)$ and $h(p) = \lim_n (-1)^n H_n(p)$.

Proof. Since $\lim_n \int_{Y_n} f d\mu_n = \int_Y f d\mu$ and $\int_Y f d\mu_n = \int_Y f dH_n = \int_Y (-1)^n H_n df$ we have $F(f) = \lim_n \int_Y (-1)^n H_n df$ for all f in $C(Y)$. Now $F(f) = \int_Y h(df)$ and since $\int_Y (-1)^n H_n df = \int_Y (-1)^n H_n(df)^n$ almost surely on $C(Y)$ it follows that $\lim_{n \to \infty} \int_Y [(-1)^n H_n - h](df)^n = 0$ for almost all f. However, $\int_Y [(-1)^n H_n - h](df)^n$ is a Gaussian functional with mean zero and variance $\int_Y [(-1)^n H_n - h]^2 dv$ so we have $\lim_n \int_Y [(-1)^n H_n - h]^2 dv = 0$ as was to be proved.

Lemma 3. If E is an open subset of $C(Y)$, then $m(E) > 0$.

Proof. Let $I = \{f \in C(Y) : ||f|| \leq \lambda \}$ where $||f||$ is the uniform norm of f and $\lambda > 0$. Let $\{f_k\}$ be a sequence of polynomials on Y each in a finite number of variables such that $\{f_k\}$ is dense in $C(Y)$. Let $I_k = \{f \in C(Y) : ||f - f_k|| \leq \lambda \}$. Then $I_k - f_k = I$, and if $F(f) = \mathcal{L}_I(f)$, we have by the translation theorem in [3] that

$$E(F(f)) = E \left\{ F(f + f_k) \exp \left[- \int_Y f_k^2 dv - 2 \int_Y f_k df \right] \right\}.$$

Thus $m(I) = 0$ if and only if $m(I_k) = 0$. However, $C(Y) = \bigcup_{k=1}^\infty I_k$ and if $m(I) = 0$ then $m(C(Y)) = 0$ which is a contradiction. Thus $m(I) > 0$ and $m(I_k) > 0$ for $k = 1, 2, \ldots$. Since E is open there exists $\lambda > 0$ and f_j such that $I_j = \{f \in C(Y) : ||f - f_j|| \leq \lambda \}$ is a subset of E. Hence $m(E) \geq m(I_j) > 0$ as was to be proved.
Let \(h(p) \) be a function on \(Y \) and define \(H_n(p) = h(p) \) for \(p \in Y \) except when some coordinate \(x_k \) of \(p \) is \(b_k \) and zero otherwise. Further, suppose \(H_n \) satisfies conditions (1) and (3) and that \(\mu_n \) is the finite signed measure concentrated on \(Y_n \) related to \((-1)^nH_n\). We then say \(\{\mu_n\} \) is obtained from \(h \). If \(\mu \) is a signed measure on \(Y \) then \(\|\mu\|_Y \) denotes the total variation of \(\mu \).

Theorem 3. If \(F(f) = \int_Y h(df) \) where \(h \in \mathcal{L}_2(Y) \) and \(\{\mu_n\} \) is obtained from \(h \) such that \(\|\mu_n\|_Y < M \) for \(n = 1, 2, \ldots \), then \(F(f) \) is essentially a bounded linear functional on \(C(Y) \), and for almost all \(f \) in \(C(Y) \)

\[
F(f) = \lim_{n \to \infty} \int_Y f \, d\mu_n.
\]

Proof. Since \(\int_Y fd\mu_n = \int_Y (-1)^n dH_n = \int_Y H_n df \) it follows that \(\lim_n \int_Y fd\mu_n = \lim_n \int_Y H_n df \). Now \(H_n \) converges to \(h \) in \(\mathcal{L}_2(Y) \), and for almost all \(f \in C(Y) \)

\[
\lim_{n \to \infty} \left[\int_Y H_n df - \int_Y h(df) \right] = \lim_{n \to \infty} \int_Y (H_n - h)(df) = 0
\]

since \(\lim_n \int_Y (H_n - h)^2 dv = 0 \). Hence \(\lim_n \int_Y fd\mu_n = \int_Y h(df) = F(f) \) for almost all \(f \) in \(C(Y) \). Since open sets have positive measure there exists a dense set \(\{f_k\} \) in \(C(Y) \) such that \(\lim_n \int_Y f_k d\mu_n = F(f_k) \) for \(k = 1, 2, \ldots \). Let \(f \in C(Y) \). Then

\[
\left| \int_Y f \, d\mu_n - \int_Y f \, d\mu_m \right| \leq 2M\|f - f_k\| + \left| \int_Y f_k d\mu_n - \int_Y f_k d\mu_m \right|,
\]

so \(\lim_n \int_Y fd\mu_n \) exists for all \(f \in C(Y) \). If \(L(f) = \lim_n \int_Y fd\mu_n \), then \(L(f) \) is linear, \(L(f) = F(f) \) almost surely, and \(L(f) \leq M\|f\| \). Hence \(F(f) \) is an essentially bounded linear functional on \(C(Y) \).

4. Since any compact metric space \(X \) is homeomorphic to a closed subset of \(Y \) it follows that any additive functional on \(C(X) \) gives rise to an additive functional on \(C(Y) \). That is, let \(\phi \) be a homeomorphism of \(X \) into \(Y \) and define \(\theta(f) = f(\phi(\cdot)), f \in C(Y) \), then \(\theta \) maps \(C(Y) \) onto \(C(X) \) and \(\theta \) is continuous. The measure \(m^\theta \) is defined on the Borel subsets \(\mathcal{A} \) of \(C(Y) \) by the equation \(m^\theta(A) = m(\theta^{-1}(A)), A \in \mathcal{A} \). Then if \(G \) is an essentially additive \(m^\theta \)-measurable functional on \(C(X) \), we have \(F(f) = G(\theta(f)) \) as an essentially additive measurable functional on \(C(Y) \). Using Theorem 1 with \(\phi \) and \(\theta \) defined as above, we get the following result.

Theorem 4. If a functional \(G \) on \(C(X) \) is essentially additive and \(m^\theta \)-measurable, then there exists an \(h \) in \(\mathcal{L}_2(Y) \) such that \(g = \theta(f) \) implies
\[G(g) = \int_Y h(d\mu) \]

for almost every \(g \) in \(C(X) \).

In particular, since the open sets of \(C(X) \) are \(m^g \)-measurable it follows that the bounded linear functionals on \(C(X) \) have the above representation.

Bibliography