NOTE ON COLLAPSING $K \times I$ WHERE K IS A CONTRACTIBLE POLYHEDRON

PAUL DIERKER

The dunce hat D is obtained from the two-simplex $\langle a, b, c \rangle$ by identifying all three sides, $\langle a, b \rangle = \langle a, c \rangle = \langle b, c \rangle$. D is of interest because it is one of the simplest contractible polyhedra which is not collapsible (there is no free face from which to begin the collapsing). However, it is well known [2] that $D \times I$ is collapsible. This leads to the following conjecture.

Conjecture. If K is a contractible two-complex, then $K \times I$ is collapsible. This conjecture is of particular interest since it implies the 3-dimensional Poincaré conjecture [2].

In this note we will consider a method for collapsing $K \times I$ for certain contractible polyhedra K. This method is summarized in the following theorem.

Theorem. If L is a collapsible polyhedron and L collapses to K by an elementary collapse, then $K \times I$ is collapsible.

Proof. Since Z collapses to K by an elementary collapse, we have $L = K \cup B^n$ and $B^n \cap K = B^{n-1}$ with $B^{n-1} \subseteq \text{bdry}(B^n)$. B^n and B^{n-1} are polyhedral n and $n-1$ balls respectively. Then $K \times I$ collapses to

$$(K \times \{0\}) \cup (B^{n-1} \times I) = K'.$$

K' is clearly piecewise linearly homeomorphic to L. Thus $K \times I$ is collapsible.

As a trivial corollary of the previous theorem we get

Corollary. If L is collapsible and L collapses to K, then there is an integer p such that $K \times I^p$ is collapsible.

Since by [1] a homotopically trivial polyhedron has the same simple homotopy type as a point, we have immediately

Corollary. If K is a homotopically trivial polyhedron, then there is an integer p such that $K \times I^p$ is collapsible.

Example 1. The dunce hat, D. Although it is well known that $D \times I$ is collapsible, an application of the above theorem seems to be conceptually simpler than the usual method.

Received by the editors February 4, 1967.

1 Research supported by NSF Grant 5868.
In Figure 1 we picture a two simplex, two of whose sides have been identified. The identification of a generator of the cone with its base, as indicated by the numbering of the vertices, yields the dunce hat.

We now expand D to the complex $L = D \cup B^3$ where B^3 is the tetrahedron with vertices v_0, v_1, v_3, v_4. L is indicated in Figure 2.

Now we note that L collapses to D (across (v_1, v_3, v_4)). Moreover it is easily seen that L is collapsible. First collapse B^3 across (v_0, v_1, v_3) and then proceed to collapse the two cell $(v_0, v_4) \cup (v_0, v_3, v_4)$ across the one cell (v_0, v_3). The remaining collapses are obvious. Thus $D \times I$ is collapsible.

Example 2. Bing's house with two rooms, H, H is the two-polyhedron pictured in Figure 3.
In Figure 3 we see that T is a square disk with an open square disk removed, P a square disk with two open square disks removed, and B is a square disk with an open square disk removed. W_1, W_2, W_3, and W_4, the walls of the house, are square disks. C_1 and C_2, the two chimneys, are square cylinders, and K_1 and K_2, the curtains, are rectangular disks.

It is easy to show that H is homotopically trivial, and clearly H is not collapsible.
However, an application of the above theorem shows that $H \times I$ is collapsible. To see this just "fatten" the curtain K_1 up to a 3-cell B^3 as shown in Figure 4.

Let $K = H \cup B^3$. Clearly K collapses to H by an elementary collapse. Moreover, the following steps show that K is collapsible.

1. Collapse B^3 across $B^3 \cap T$.
2. Collapse $B^3 \cap C_1$ across $B^3 \cap C_1 \cap T$.
3. Collapse $B^3 \cap W_4$ across $B^3 \cap W_4 \cap T$.
4. Collapse $B^3 \cap P$ across $B^3 \cap P \cap C_1$.

We have now reached a position where we may collapse across the one cell $B^3 \cap W_4 \cap P$. After several collapses one can eliminate the entire bottom room along with its chimney and curtain. The remaining collapses should be clear.

References

Michigan State University