STRETCHING PHENOMENA IN MAPPINGS OF SPHERES

H. BLAINE LAWSON, JR.

This paper presents an extension of the recent work of R. Olivier [3] on dilatation phenomena in differentiable mappings of spheres.

Let \(S^k = \{(x_1, \ldots, x_{k+1}) \in \mathbb{R}^{k+1}: \sum_{j=1}^{k+1} x_j^2 = 1\} \) be provided with the usual unit sphere metric \(d \). Let \(f: S^m \to S^n \) be a differentiable mapping and define a dilatation constant \(\delta_f = \max \|f_*(X)\|/\|X\| \), where \(X \) runs over the nonzero tangent vectors of \(S^m \) and where \(f_* \) is the induced mapping on the tangent vectors. Olivier showed that if \(m = n \) and \(f \) has even nonzero degree, or if \(m > n = 2 \) and \(f \) is not homotopic to zero (designated \(f \not\equiv 0 \)), then \(\delta_f \geq 2 \).

We prove a generalization conjectured by Olivier.

Theorem 1. If \(m > n \) for any \(n > 0 \) and if \(f \not\equiv 0 \), then \(\delta_f \geq 2 \).

Proof. The Borsuk-Ulam theorem [3, p. 266] guarantees the existence of a point \(x \in S^m \) such that \(f(x) = f(-x) \). Assume \(\delta_f < 2 \). Then each meridian in \(S^m \) from \(-x\) to \(x\) is mapped into a loop at \(a = f(x) \) of length less than \(2\pi \). Hence \(-a\) does not belong to the image \(f(S^m) \) and therefore \(f \not\equiv 0 \).

Let \(\{f\} \) denote the homotopy class of \(f \) in \(\pi_m(S^n) \) and let \(\Sigma: \pi_{m-1}(S^{n-1}) \to \pi_m(S^n) \) be the suspension homomorphism.

Theorem 2. Let \(m = 2k > 0 \) and assume that \(2\{f\} \not\equiv 0 \). Then if \(\{f\} \in \Sigma(\pi_{2k-1}(S^{n-1})) \), \(\delta_f \geq 3 \).

This statement is of interest only for \(k \geq n \) but has the following interesting corollary.

Corollary 1. If \(f: S^{2k} \to S^2 \) is a differentiable mapping with \(k > 2 \) and \(2\{f\} \not\equiv 0 \), then \(\delta_f \geq 3 \).

We first prove a

Lemma. Let \(f: S^{2k} \to S^n \) with \(k > 0 \) be any mapping such that \(2\{f\} \not\equiv 0 \). Then there exists a point \(x \in S^{2k} \) such that \(f(x) = -f(-x) \).

Proof. Suppose that no such point exists. Then the mapping \(\phi: S^{2k} \to S^n \), where \(\phi(x) = (f(x) - f(-x)) / \|f(x) - f(-x)\| \) is well-defined. (The operations are done in \(\mathbb{R}^{n+1} \).) Clearly, \(\phi \cong f \) and \(\phi \cdot A = \phi \).

Received by the editors January 14, 1967.

1 This research was supported in part by NFS Grant GP-6977.

433
where $A : S^{2k} \to S^{2k}$ is the antipodal map. Hence the following triangle commutes.

$$
\begin{array}{ccc}
\pi_{2k}(S^{2k}) & \xrightarrow{A_*} & \pi_{2k}(S^{2k}) \\
\phi_* & \downarrow & \phi_* \\
\pi_{2k}(S^n) & \xrightarrow{\phi_*} & \pi_{2k}(S^n)
\end{array}
$$

Setting $1 = \{\text{identity}\} \subseteq \pi_{2k}(S^{2k})$, we obtain $\{f\} = \phi_*(1) = \phi_*(A_*(1)) = \phi_*(-1) = -\{f\}$ and $2\{f\} = 0$ contrary to assumption.

Proof of Theorem 2. Suppose that $2\{f\} \neq 0$ but that $\delta_f < 3$. By the Freudenthal theorems and Theorem 1, it suffices to consider $k \geq n$ and $\delta_f \geq 2$. Let λ be a number such that $0 < \lambda < \pi$ and $\delta_f < \frac{2 + \lambda}{\pi}$. By the lemma there is a point x in S^n such that $d(f(x), f(-x)) = \pi$; and by Borsuk-Ulam [3, p. 266], there is a point x' such that $d(f(x'), f(-x')) = 0$. Thus by the continuity of d there is a point $y \in S^m$ such that $d(f(y), f(-y)) = \lambda$.

Denote by $\Omega \cdot S^i(a, b)$ the set of all piecewise smooth paths $\gamma : [0, 1] \to S^i$ such that $\gamma(0) = a$, $\gamma(1) = b$ and $\int_0^1 \|d\gamma/dt\|^2 dt \leq c^2$, with the compact-open topology. Observe that if $\gamma \in \Omega \cdot S^i(a, b)$, then the length of γ is less than or equal to c due to the Schwarz inequality.

By definition of λ, $\delta_f \pi < 2\pi + \lambda$. Therefore, since $f(y)$ and $f(-y)$ are not conjugate along any geodesic in S^n, a standard application of Morse Theory [2, p. 96] shows that

$$
\Omega^y \overset{\text{def}}{=} \Omega^y \cdot S^n(f(y), f(-y))
$$

has the homotopy type of a C-W complex with one cell in dimension zero and one cell in dimension $n - 1$, i.e., Ω^y has the homotopy type of S^{n-1}. Observe that in a natural way f induces a mapping $\tilde{f} : \Omega^x \cdot S^{2k}(y, -y) \to \Omega^y$. Clearly, $\Omega^x \cdot S^{2k}(y, -y)$ is homeomorphic to S^{2k-1} and \tilde{f} determines a unique class in $\pi_{2k-1}(S^{n-1})$.

It remains only to show that $\Sigma(\{\tilde{f}\}) = \{f\}$. Let

$$
\Omega S^n = \Omega S^n(f(y), f(-y))
$$

be the full path space of S^n and $i : \Omega^y \subset \Omega S^n$ the inclusion map. Denote by

$$
\theta : \pi_{2k}(S^n) \xrightarrow{\cong} \pi_{2k-1}(\Omega S^n)
$$

the standard adjoint isomorphism. Then the class in $\pi_{n-1}(\Omega S^n)$ deter-
mined by i corresponds to the adjoint of the identity map of S^n, and the following diagram commutes.

\[
\begin{array}{c}
\pi_{2k-1}(S^{n-1}) \\
\downarrow i_* \\
\pi_{2k-1}(\Omega S^n)
\end{array} \quad \quad \begin{array}{c}
\theta \\
\Sigma
\end{array} \quad \begin{array}{c}
\pi_{2k}(S^n)
\end{array}
\]

From the construction it is clear that $i_*(\{f\}) = \theta(\{f\})$, and thus $\Sigma(\{f\}) = \{f\}$. This completes the proof.

I would like to thank Professor Hans Samelson for several suggestions helpful in developing these ideas.

BIBLIOGRAPHY

Stanford University