Laws in nilpotent-by-finite groups
HTML articles powered by AMS MathViewer
- by John Cossey
- Proc. Amer. Math. Soc. 19 (1968), 685-688
- DOI: https://doi.org/10.1090/S0002-9939-1968-0224691-5
- PDF | Request permission
References
- Wolfgang Gaschütz, Über die $\Phi$-Untergruppe endlicher Gruppen, Math. Z. 58 (1953), 160–170 (German). MR 57873, DOI 10.1007/BF01174137
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- P. Hall, Finite-by-nilpotent groups, Proc. Cambridge Philos. Soc. 52 (1956), 611–616. MR 80095, DOI 10.1017/s0305004100031662
- G. Higman, Identical relations in finite groups, Conv. Internaz. di Teoria dei Gruppi Finiti (Firenze, 1960) Edizioni Cremonese, Rome, 1960, pp. 93–100. MR 0122858
- L. G. Kovács and M. F. Newman, Cross varieties of groups, Proc. Roy. Soc. London Ser. A 292 (1966), 530–536. MR 194505, DOI 10.1098/rspa.1966.0151
- R. C. Lyndon, Two notes on nilpotent groups, Proc. Amer. Math. Soc. 3 (1952), 579–583. MR 49889, DOI 10.1090/S0002-9939-1952-0049889-9
- B. H. Neumann, Identical relations in groups. I, Math. Ann. 114 (1937), no. 1, 506–525. MR 1513153, DOI 10.1007/BF01594191
- Sheila Oates and M. B. Powell, Identical relations in finite groups, J. Algebra 1 (1964), 11–39. MR 161904, DOI 10.1016/0021-8693(64)90004-3
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 685-688
- MSC: Primary 20.08
- DOI: https://doi.org/10.1090/S0002-9939-1968-0224691-5
- MathSciNet review: 0224691