A remark on the question of uniqueness for the Tricomi problem
HTML articles powered by AMS MathViewer
- by L. M. Sibner
- Proc. Amer. Math. Soc. 19 (1968), 541-543
- DOI: https://doi.org/10.1090/S0002-9939-1968-0225022-7
- PDF | Request permission
References
- Cathleen S. Morawetz, A uniqueness theorem for Frankl’s problem, Comm. Pure Appl. Math. 7 (1954), 697–703. MR 65791, DOI 10.1002/cpa.3160070406
- M. H. Protter, Uniqueness theorems for the Tricomi problem, J. Rational Mech. Anal. 2 (1953), 107–114. MR 52663, DOI 10.1512/iumj.1953.2.52005
- S. Agmon, L. Nirenberg, and M. H. Protter, A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type, Comm. Pure Appl. Math. 6 (1953), 455–470. MR 58835, DOI 10.1002/cpa.3160060402
- M. H. Protter, An existence theorem for the generalized Tricomi problem, Duke Math. J. 21 (1954), 1–7. MR 60127 S. Gellerstedt, Sur un problème aux limites pour une équation linéaire aux derivées partielles du second ordre de type mixte, Thesis, Uppsala, 1935.
- L. M. Sibner, A boundary value problem for an equation of mixed type having two transitions, J. Differential Equations 4 (1968), 634–645. MR 231059, DOI 10.1016/0022-0396(68)90013-2
- Cathleen S. Morawetz, Mixed equations and transonic flow, Rend. Mat. e Appl. (5) 25 (1966), 482–509. MR 225020
- Cathleen S. Morawetz, Note on a maximum principle and a uniqueness theorem for an elliptic-hyperbolic equation, Proc. Roy. Soc. London Ser. A 236 (1956), 141–144. MR 79712, DOI 10.1098/rspa.1956.0119
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 541-543
- MSC: Primary 35.70
- DOI: https://doi.org/10.1090/S0002-9939-1968-0225022-7
- MathSciNet review: 0225022