A class of curves on which polynomials approximate efficiently
HTML articles powered by AMS MathViewer
- by D. J. Newman and L. Raymon
- Proc. Amer. Math. Soc. 19 (1968), 595-599
- DOI: https://doi.org/10.1090/S0002-9939-1968-0225056-2
- PDF | Request permission
References
- S. N. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle, Gauthier-Villars, Paris, 1926.
- Dunham Jackson, The theory of approximation, American Mathematical Society Colloquium Publications, vol. 11, American Mathematical Society, Providence, RI, 1994. Reprint of the 1930 original. MR 1451140
- G. G. Lorentz, Lower bounds for the degree of approximation, Trans. Amer. Math. Soc. 97 (1960), 25–34. MR 117487, DOI 10.1090/S0002-9947-1960-0117487-3
- D. J. Newman and L. Raymon, Quantitative polynomial approximation on certain planar sets, Trans. Amer. Math. Soc. 136 (1969), 247–259. MR 234176, DOI 10.1090/S0002-9947-1969-0234176-3
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 595-599
- MSC: Primary 41.15
- DOI: https://doi.org/10.1090/S0002-9939-1968-0225056-2
- MathSciNet review: 0225056