ON THE METASTABLE HOMOTOPIE OF $O(n)$

MARK MAHOWALD

The purpose of this note is to present an alternate proof of the main result of [3]. In particular, we prove

Theorem 1 (1 of [3]). If $k > 4$, a nontrivial stable real vector bundle over S^k is the sum of an irreducible $(2k + 1)$-plane bundle and a trivial bundle.

This result has several geometric applications and easily implies

Theorem 2 (2 of [3]). For $q < 2(n - 1)$ and $n \geq 13$,

$$\pi_q(O(n)) = \pi_q(O) \oplus \pi_{q-1}(V_{2n,n}).$$

We will be only concerned with the proof of Theorem 1 in this note. Extensive calculation of $\pi_{q-1}(V_{2n,n})$ are given in [4].

The proof will be preceded by several lemmas which use the following notation. Let X be a space. The symbol $X[k]$ means the $(k - 1)$-connected fibering over X. $E^r,t_i(X)$ is the rth term in the Adams spectral sequence [1] for X leading to the group associated with $\pi_i^s(X)$. Thus $E^r,t_i(X) = \text{Ext}_{\pi_i^s}^r(\tilde{H}^*(X; Z_2), Z_2)$, where A is the mod 2 Steenrod algebra. V_k is the fiber of $BO_k \to BO$.

Lemma 1. If $t - s \leq 4k$ and $k > 4$, then

$$E^2_{s,t}(BSO_{2k+1}[2k + 1]) \simeq E^2_{s,t}(BSO[2k + 1]) \oplus E^2_{s,t}(V_{2k+1}).$$

Proof. Let p be the smallest integer such that $2^p > 4k$. For $p = 4a + b$, $0 \leq b \leq 3$, let $j(p) = 8a + 2^b$. Let $i_p : BSO[j(p)] \to BSO$ be the usual inclusion. Then $i^*_p w_j = 0$ for all $j < 2^p$ [5]. If $k > 4$, then $BSO_{2k+1}[j(p)]$ is the total space of $i_p^* \gamma_{2k+1}$ where γ_{2k+1} is the bundle $BSO_{2k+1} \to BSO$. Therefore

$$H^q(BSO_{2k+1}[j(p)]) \simeq \sum_{u+v=q} H^u(BSO[j(p)]) \oplus H^v(V_{2k+1})$$

for $q \leq 4k + 1$ as Z_2 modules. Since $i' : BSO[2k+1] \to BSO[j(p)]$ induces the zero map in cohomology if $2k + 1 > j(p)$ [5], we have

$$H^q(BSO_{2k+1}[2k + 1]) \simeq \sum_{u+v=q} H^u(BSO[2k + 1]) = H^v(V_{2k+1})$$

as A modules. This implies the lemma.

Received by the editors March 1, 1967.

1 This work was supported in part by the U. S. Army Research Office (Durham).
Corollary 2. The projection \(\bar{p} : BSO_{2k+1}[2k+1] \to BSO[2k+1] \) induces an epimorphism

\[\bar{p}^*: E_2^{s,t}(BSO_{2k+1}[2k+1]) \to E_2^{s,t}(BSO[2k+1]). \]

Lemma 3. Let \(\omega_k : S^k \to BSO[2k+1] \) be a generator of \(\pi_{4k}(BSO[2k+1]) \).

\(\omega_k \) has filtration

\[
\begin{align*}
&\geq k-1, & k &= 0, 1 \pmod{4}, \\
&\geq k-2, & k &= 2 \pmod{4}, \text{ and} \\
&\geq k, & k &= 3 \pmod{4}
\end{align*}
\]

in the Adams spectral sequence sense.

Proof. Consider the diagram

\[S^k \xrightarrow{i_j} BSO[4k] \to \cdots \xrightarrow{i_1} BSO[2k \times 1]. \]

In cohomology each map \(i^*_u \) is zero if the connectivity increases. Maps between spaces which induce the zero map in cohomology have filtration \(\geq 1 \). Thus the question of filtration reduces to only counting the number of nonzero homotopy groups between \(2k+1 \) and \(4k \) in \(BSO \).

Lemma 4. \(E_2^{s,t}(V_{2k+1}) = 0 \) if \(t-s = 4k-1 \) and

\[
\begin{align*}
s &\geq k, & k &= 0, 1 \pmod{2} \\
&\geq k + 1, & k &= 2, 3 \pmod{4}
\end{align*}
\]

Proof. Let \(0 \leq u < 8 \) be such that \(2k+1+u = 4k-1 \) (mod 8). Let \(0 \leq v < 4 \) be such that \(k = v \) (mod 4). It is an easy calculation to compute \(\text{Ext}_A^{s,t}(\tilde{V}(V_{2k+1}), Z_2) \) by minimal resolution [1] for \(t = 2k+1 + u + s \) and \(s = v, v+1 \) (or one can use the tables in [4]). The Adams periodicity theorems [2] enable one to use this calculation to prove the lemma.

Now we can prove the main theorem if \(k \neq 2 \) (mod 4).

Proof of Theorem 1. Let \(\bar{\alpha} \in E_2^{s,t}(BSO_{2k+1}[2k+1]) \) project to the class in \(E_2^{s,t}(BSO[2k+1]) \) to which \([\omega_k] \) projects. We are finished if we show that \(\bar{\alpha} \) is a permanent cycle. Since \(\bar{p} \bar{\alpha} \) is not a boundary, \(\bar{\alpha} \) is not a boundary. If \(\delta_r \bar{\alpha} = \beta \), then \(\beta \) must be in the summand \(E_2^{s,t}(V_{2k+1}) \) but Lemma 4 says that this group is zero for all possible \(s \) and \(t \) values that \(\beta \) might have.

To finish the proof of Theorem 1, we just need to indicate how to fix the argument for \(k \equiv 2 \) (4). Let \(\alpha \in H^u(s)(V_{2k+1}) \) be a generating set over \(A \). Let

\[BSO_{2k+1}[j(p)] \xrightarrow{f} BSO[j(p)] \times \prod_i K(Z_2, u(i)) \]
be the usual map on the first factor, and on the second factor \(f^*(\iota_i) = \alpha_i \) where \(\iota_i \) is the characteristic class of \(K_i = K(\mathbb{Z}_2, u(i)) \). Let \(F \) be the fiber of \(f \) and let \(\tilde{\pi} : E \to BSO[2k + 1] \) be the fiber space induced from \(f \) by the composite map

\[
BSO[2k + 1] \to BSO[j(\tilde{\pi})] \to BSO[j(\tilde{\pi})] \times \prod_i K_i,
\]

where the maps are the obvious ones. Following the arguments given above we can prove

Lemma 5. If \(t - s \leq 4k \) and \(k > 4 \), then:

(i) \(E_2^{s,t}(E) \simeq E_2^{s,t}(BSO[2k+1]) \oplus E_2^{s,t}(F) \);

(ii) \(E_2^{s,t}(F) \simeq E_2^{s+1,t+1}(V_{2k+1}) \).

The theorem follows from this as above.

Bibliography

5. R. E. Stong, *Determination of \(H^*(BO(k, \cdots, \infty), \mathbb{Z}_2) \) and \(H^*(BU(k, \cdots, \infty), \mathbb{Z}_2) \)*, Trans. Amer. Math. Soc. 107 (1963), 526–544.

Northwestern University