On the metastable homotopy of $\textrm {O}(n)$
HTML articles powered by AMS MathViewer
- by Mark Mahowald
- Proc. Amer. Math. Soc. 19 (1968), 639-641
- DOI: https://doi.org/10.1090/S0002-9939-1968-0225324-4
- PDF | Request permission
References
- J. Frank Adams, Stable homotopy theory, Second revised edition, Lecture Notes in Mathematics, No. 3, Springer-Verlag, Berlin-New York, 1966. Lectures delivered at the University of California at Berkeley, 1961; Notes by A. T. Vasquez. MR 0196742, DOI 10.1007/978-3-662-15905-7
- J. F. Adams, A periodicity theorem in homological algebra, Proc. Cambridge Philos. Soc. 62 (1966), 365โ377. MR 194486, DOI 10.1017/s0305004100039955
- M. G. Barratt and M. E. Mahowald, The metastable homotopy of $\textrm {O}(n)$, Bull. Amer. Math. Soc. 70 (1964), 758โ760. MR 182004, DOI 10.1090/S0002-9904-1964-11229-5 M. E. Mahowald, The metastable homotopy of ${S^n}$, Mem. Amer. Math. Soc., No. 72 (1967).
- Robert E. Stong, Determination of $H^{\ast } (\textrm {BO}(k,\cdots ,\infty ),Z_{2})$ and $H^{\ast } (\textrm {BU}(k,\cdots ,\infty ),Z_{2})$, Trans. Amer. Math. Soc. 107 (1963), 526โ544. MR 151963, DOI 10.1090/S0002-9947-1963-0151963-5
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 639-641
- MSC: Primary 55.45; Secondary 57.00
- DOI: https://doi.org/10.1090/S0002-9939-1968-0225324-4
- MathSciNet review: 0225324