ON THE HYPERFINITE II₁-FACTOR
SHŌICHIRŌ SAKAI

1. Introduction. In this paper, we shall consider the following problem which has been asked by several mathematicians: Can we embed any arbitrary finite factor on a separable Hilbert space into the hyperfinite II₁-factor? The answer is negative.

2. Theorem. First of all, we shall show,

Lemma 1. Let M be a finite W^*-algebra on a Hilbert space \mathcal{H} such that M' has the property P in the sense of Schwartz [1], $B(\mathcal{H})$ the W^*-algebra of all bounded operators on \mathcal{H}, and let N be a W^*-subalgebra of M, then there exists a linear mapping P on $B(\mathcal{H})$ to N satisfying the following conditions:

1. $P(x^*) = P(x)^*$ for $x \in B(\mathcal{H})$,
2. $P(h) \geq 0$ for $h(\geq 0) \in B(\mathcal{H})$, and $P(I) = I$,
3. $P(axb) = aP(x)b$ for $a, b \in N$ and $x \in B(\mathcal{H})$.

Proof. By the result of Schwartz [2], there is a linear mapping P_1 on $B(\mathcal{H})$ to M satisfying the same properties. On the other hand, by the result of Umegaki [3], there is a linear mapping P_2 on M to N satisfying the same properties. Now put $P(x) = P_2(P_1(x))$ for $x \in B(\mathcal{H})$, then clearly P satisfies the required properties. This completes the proof.

Now let M be the hyperfinite II₁-factor, and let N be the II₁-factor generated by the left regular representation of a countable discrete free group G with two generators.

Then we shall show the following theorem.

Theorem. There is no subfactor in M which is *-isomorphic to N.

To prove the theorem, we shall proceed as follows.

Now suppose that there is a subfactor N_1 of M which is *-isomorphic to N.

Let $\{\pi, \mathcal{H}\}$ be the standard *-representation of M on a Hilbert space \mathcal{H}.

Let K be an \aleph_0-dimensional Hilbert space, and let $\mathcal{H} \otimes K$ be the tensor product of \mathcal{H} and K. We shall consider the W^*-representation $\{\pi \otimes I_K, \mathcal{H} \otimes K\}$ of M on $\mathcal{H} \otimes K$, where $\pi \otimes I_K$ is the amplification of π (cf. [1]) and I_K is the identity operator on K.

Received by the editors February 15, 1967.

1 This paper was written with partial support from ONR Contract NR-551(57).
Lemma 2. The commutant \(\{ \pi(M) \otimes I_K \}' = \pi(M)' \otimes B(K) \) in \(\mathcal{S} \otimes K \) has the property P, where \(B(K) \) is the \(W^* \)-algebra of all bounded operators on \(K \).

Proof. \(\pi(M)' \) has the property P (cf. [2]). Let \(a \) be an arbitrary element of the \(W^* \)-algebra \(B(\mathcal{S} \otimes K) \) of all bounded operators on the Hilbert space \(\mathcal{S} \otimes K \), and let \(C_1(a) \) be the \(\sigma \)-weakly closed convex envelope of \(\{ u^*aau \mid u \text{ (unitary)} \in I_b \otimes B(K) \} \), where \(I_b \) is the identity operator on \(\mathcal{S} \). Then \(C_1(a) \cap (I_b \otimes B(K))' = C_1(a) \cap (B(\mathcal{S}) \otimes I_K) \neq (\varnothing) \), because \(I_b \otimes B(K) \) is a type I factor so that there exists an increasing sequence of \(2^n \times 2^n \) matrix algebras \(\{ M_n \mid n = 1, 2, 3, \ldots \} \) such that the \(\sigma \)-weak closure of \(U_{n-1}M_n = I_b \otimes B(K) \).

Next, take \(a_0 \in C_1(a) \cap (B(\mathcal{S}) \otimes I_K) \), and let \(C_2(a_0) \) be the \(\sigma \)-weakly closed convex envelope of \(\{ u^*a_0au \mid u \text{ (unitary)} \in \pi(M)' \otimes I_K \} \). Then clearly \(C_2(a_0) \cap \{ \pi(M)' \otimes I_K \}' \cap (B(\mathcal{S}) \otimes I_K) \neq (\varnothing) \), because \(\pi(M)' \) has the property P. On the other hand, \(C_2(a_0) \) is contained in the \(\sigma \)-weakly closed convex envelope of \(\{ u^*a_0au \mid u \text{ (unitary)} \in \pi(M)' \otimes B(K) \} \). Hence \(\pi(M)' \otimes B(K) \) has the property. This completes the proof.

The commutant \(\{ \pi(N_1) \otimes I_K \}' \) of \(\pi(N_1) \otimes I_K = \pi(N_1)' \otimes B(K) \); hence it is a II\(_{\infty}\)-factor.

Let \(\xi \) be a trace vector for \(M \) in \(\mathcal{S} \) and \(\eta \) be a nonzero vector in \(K \).

Let \(\{ \pi(N_1) \otimes I_K \xi \otimes \eta \} \) be the closed subspace of \(\mathcal{S} \otimes K \) generated by \(\pi(N_1) \otimes I_K \xi \otimes \eta \) and \(E' \) be the orthogonal projection of \(\mathcal{S} \otimes K \) onto \(\{ \pi(N_1) \otimes I_K \xi \otimes \eta \} \). Then the representation \(x \mapsto (\pi(x) \otimes I_K)E'(x \in N_1) \) of \(N_1 \) is standard; hence \(E' \) is a finite projection in \(\{ \pi(N_1) \otimes I_K \}' \).

Let \(\{ E_n \mid n = 1, 2, \ldots \} \) be a sequence of mutually orthogonal, equivalent projections in \(\{ \pi(N_1) \otimes I_K \}' \) such that \(E_n' \sim E' \) and \(\sum_{n=1}^{\infty} E_n' = I_{b \otimes K} \) where \(I_{b \otimes K} \) is the identity operator on \(b \otimes K \).

Now let \(G \) be the countable discrete free group with two generators, \(L^2(G) \) the Hilbert space of all square integrable functions on \(G \) with respect to the Haar measure, \(L^\infty(G) \) the algebra of all bounded functions on \(G \).

Let \(\{ U, L^2(G) \} \) be the left regular representation of \(G \) on \(L^2(G) \), and \(N \) be the \(W^* \)-algebra generated by \(\{ U(g) \mid g \in G \} \).

For \(f \in L^\infty(G) \), we shall define a bounded operator \(T_f \) on \(L^2(G) \) as follows:

\[
T_fh = foh \quad \text{for } h \in L^2(G).
\]

Let \(A = \{ T_f \mid f \in L^\infty(G) \} \), then \(A \) is a commutative \(W^* \)-algebra on \(L^2(G) \).

\(N \) on \(L^2(G) \) is standard; hence \(N \) on \(L^2(G) \) is spatial isomorphic to \(\{ \pi(N_1) \otimes I_K \}' E' \) on \(E' \mathcal{S} \otimes K \).
Since $E'_n \sim E'$ and $\sum_{n=1}^{\infty} E'_n = I_\mathcal{B} \otimes K$, we can express the W^*-algebra $\{\pi(N_1) \otimes I_K\}$ as follows:

$$\left\{\pi(N_1) \otimes I_K\right\} = \mathcal{A} \otimes I_K,$$

where \mathcal{A} is a W^*-algebra on a some Hilbert space \mathcal{H}_1, and \mathcal{A} on \mathcal{H}_1 is spatial isomorphic to N on $L^2(G)$, and K_1 is a Hilbert space. We shall identify \mathcal{A} with N by a spatial isomorphism.

Now we shall prove the theorem.

Proof of Theorem. Now by Lemma 1, there exists a linear mapping P on $B(\mathcal{H} \otimes K)$ to $\pi(N_1) \otimes I_K$ satisfying the properties (1)-(3).

Let τ be the trace on $\pi(N_1) \otimes I_K$.

For $f \in L^\infty(G)$, put $f_s(t) = f(s^{-1}t)$ for $s, t \in G$, then $T_s h(t) = f_s(t) h(t) = f(s^{-1}t) h(t) = U(s) T_s U(s^{-1}) h(t)$ for $h \in L^2(G)$. Now we shall define a linear functional ϕ on $L^\infty(G)$ as follows: $\phi(f) = \tau(P(T_f \otimes I_{K_1}))$ for $f \in L^\infty(G)$. Then ϕ is a positive linear functional such that $\phi(1) = 1$.

Moreover,

$$\varphi(f_s) = \tau(P(U(s) T_f U(s^{-1}) \otimes I_{K_1}))$$

$$= \tau(P(U(s) \otimes I_{K_1}) T_f \otimes I_{K_1} U(s^{-1}) \otimes I_{K_1})$$

$$= \tau(U(s) \otimes I_{K_1} P(T_f \otimes I_{K_1}) U(s^{-1}) \otimes I_{K_1})$$

$$= \tau(P(T_f \otimes I_{K_1}))$$

$$= \phi(f) \quad \text{for } f \in L^\infty(G).$$

Hence, ϕ will define a left invariant finitely additive measure on G. This is a contradiction (cf. [2]) and completes the proof.

Now, the following problem would be very interesting.

Problem. Can we conclude that any II_1-subfactor of the hyperfinite II_1-factor is hyperfinite?

References

University of Pennsylvania