On the uniform stability of a perturbed linear functional differential equation
HTML articles powered by AMS MathViewer
- by Nelson Onuchic
- Proc. Amer. Math. Soc. 19 (1968), 528-532
- DOI: https://doi.org/10.1090/S0002-9939-1968-0227574-X
- PDF | Request permission
References
- A. Halanay, Differential equations: Stability, oscillations, time lags, Academic Press, New York-London, 1966. MR 0216103 J. K. Hale, “Asymptotic behavior of the solutions of differential-difference equations,” (Russian Summary), Qualitative methods in the theory of nonlinear vibrations, Proc. Internat. Sympos. Nonlinear Vibrations, Vol. II, 1961, 427-432.
- N. N. Krasovskiĭ, Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay, Stanford University Press, Stanford, Calif., 1963. Translated by J. L. Brenner. MR 0147744
- Nelson Onuchic, On the uniform stability of a perturbed linear system, J. Math. Anal. Appl. 6 (1963), 457–464. MR 163028, DOI 10.1016/0022-247X(63)90025-8
- Aaron Strauss, On the stability of a perturbed nonlinear system, Proc. Amer. Math. Soc. 17 (1966), 803–807. MR 196204, DOI 10.1090/S0002-9939-1966-0196204-6
- A. M. Zverkin, Dependence of the stability of solutions of linear differential equations with lagging argument upon the choice of the initial moment, Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 1959 (1959), no. 5, 15–20 (Russian). MR 0114028
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 528-532
- MSC: Primary 34.75
- DOI: https://doi.org/10.1090/S0002-9939-1968-0227574-X
- MathSciNet review: 0227574