Sequentially $1-\textrm {ULC}$ surfaces in $E^{3}$
HTML articles powered by AMS MathViewer
- by C. E. Burgess and L. D. Loveland
- Proc. Amer. Math. Soc. 19 (1968), 653-659
- DOI: https://doi.org/10.1090/S0002-9939-1968-0227962-1
- PDF | Request permission
References
- R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145β158. MR 61377, DOI 10.2307/1969836
- R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465β483. MR 87090
- R. H. Bing, An alternative proof that $3$-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37β65. MR 100841, DOI 10.2307/1970092
- R. H. Bing, Conditions under which a surface in $E^{3}$ is tame, Fund. Math. 47 (1959), 105β139. MR 107229, DOI 10.4064/fm-47-1-105-139
- R. H. Bing, A surface is tame if its complement is $1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294β305. MR 131265, DOI 10.1090/S0002-9947-1961-0131265-1
- R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33β45. MR 160194
- C. E. Burgess, Characterizations of tame surfaces in $E^{3}$, Trans. Amer. Math. Soc. 114 (1965), 80β97. MR 176456, DOI 10.1090/S0002-9947-1965-0176456-2
- David S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459β476. MR 160193, DOI 10.2307/2373136
- David S. Gillman, Sequentially $1-\textrm {ULC}$ tori, Trans. Amer. Math. Soc. 111 (1964), 449β456. MR 162234, DOI 10.1090/S0002-9947-1964-0162234-6 Norman Hosay, Some sufficient conditions for a continuum on a $2$-sphere to lie on a tame $2$-sphere, Notices Amer. Math. Soc. 11 (1964), 370-371.
- L. D. Loveland, Tame subsets of spheres in $E^{3}$, Pacific J. Math. 19 (1966), 489β517. MR 225309, DOI 10.2140/pjm.1966.19.489
- L. D. Loveland, Sufficient conditions for a closed set to lie on the boundary of a $3$-cell, Proc. Amer. Math. Soc. 19 (1968), 649β652. MR 227961, DOI 10.1090/S0002-9939-1968-0227961-X
- Edwin E. Moise, Affine structures in $3$-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159β170. MR 61822, DOI 10.2307/1969837 G. T. Whyburn, On sequences and limiting sets, Fund. Math. 25 (1935), 408-426.
- G. T. Whyburn, Monotoneity of limit mappings, Duke Math. J. 29 (1962), 465β470. MR 149447, DOI 10.1215/S0012-7094-62-02945-9
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 653-659
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9939-1968-0227962-1
- MathSciNet review: 0227962