REGULAR ELEMENTS IN SEMIPRIME RINGS

R. E. JOHNSON AND L. S. LEVY

In the proof of Goldie's theorem [1, Theorem 4.1], one of the crucial steps is to establish that every large right ideal contains a regular element [1, Theorem 3.9]. Recently, S. A. Amitsur told one of the authors he had proved, using the weaker conditions of the ACC on left and right annihilators, that every prime ring contains a left regular element \(a \) (i.e., the left annihilator \(a^l \) of \(a \) is zero) and a right regular element \(b \) (i.e. the right annihilator \(b^r \) of \(b \) is zero). In this note, we generalize Amitsur's result as follows:

Theorem. In a semiprime ring \(R \) with ACC on left and right annihilators, every large right ideal contains a regular element.

We remark that for semiprime rings, Goldie's conditions on a ring imply ours [5, Lemma 2]. However, the converse does not hold, since there exist noncommutative integral domains which do not have a right quotient division ring (see, e.g. [1, §6]).

We also remark that although the ring \(R \) in our theorem need not have a (classical) right quotient ring, our result shows that \(R \) does have a maximal right quotient ring \(Q \) (in the sense of Johnson) and for each \(q \in Q \) there exist \(d, r \in R \), with \(d \) regular, such that \(qd = r \).

To remove any doubt about terminology, the ACC on right annihilators means that the ACC holds in the set of all right ideals of the form \(\{ z \in R \mid Sz = 0 \} \), \(S \) any subset of \(R \), and a right ideal is large if it intersects every nonzero right ideal nontrivially. The notation \(Z_r(R) \) is used for the right singular ideal of \(R \): \(Z_r(R) = \{ a \in R \mid a^r \text{ large} \} \).

Lemma. (i) If a prime ring \(R \) has a maximal right annihilator then \(Z_r(R) = 0 \). (ii) If \(R \) is a ring having \(Z_r(R) = 0 \) and the ACC on right annihilators, then \(a^r = 0 \) whenever \(aR \) is a large right ideal of \(R \).

Part (i) is proved in [3, Theorem 1], whereas part (ii) is proved in [2, Theorem 3.3].

Proof of the Theorem. We note that the ACC on right annihilators is equivalent to the DCC on left annihilators. We first prove the theorem in the special case that \(R \) is prime.

Let \(A \) be a large right ideal of the prime ring \(R \). We shall show that for every \(a \in A \) such that either \(a^r \neq 0 \) or \(a^l \neq 0 \), there exists \(b \in A \)
such that $b^r \subseteq a^r$ and $b^l \subseteq a^l$ with at least one of these inequalities strict. By the DCC on right and left annihilators, it will follow that $a^r = 0$ and $a^l = 0$ for some $a \in A$.

By Zorn's lemma, R contains direct sums of the form $aR \oplus B$, $B \subseteq A$, and $Ra \oplus C$ (B and C being right and left ideals of R, respectively), where $aR \oplus B$ is a large right ideal of R and $Ra \oplus C$ is a large left ideal.

If $a^r \neq 0$, then by the lemma (and its left-handed version) neither aR nor Ra is large in R; hence B and C are nonzero. The same conclusion holds if $a^l \neq 0$. Since R is prime, $BC \neq 0$ ($BC \subseteq A$) and we have the following nontrivial direct sums of additive groups:

(1) $aR \oplus BC \subseteq aR \oplus B$, $Ra \oplus BC \subseteq Ra \oplus C$.

The directness of the sums in (1) shows that for every $y \in BC$

(2) $(a + y)^r \subseteq a^r$, $(a + y)^l \subseteq a^l$.

We claim that if $a^r \neq 0$, then the first inequality of (2) is strict for some $y \in BC$. For if $(a + y)^r = a^r$ for every $y \in BC$, then $BCa^r = 0$. Since R is prime and B is a right ideal, necessarily $Ca^r = 0$ and hence $(Ra \oplus C)a^r = 0$. However, this equation contradicts the fact, according to the lemma, that $Z(R) = 0$.

Similarly, if $a^l \neq 0$, there exists some $y \in BC$ such that the second inequality of (2) is strict. Thus, the theorem is proved if R is prime.

We now carry out a reduction to the prime case, making use of the theorem [4, Theorem 3.13] that a semiprime ring R satisfying the ACC on two-sided annihilator ideals is an irredundant subdirect sum of a finite number of prime rings. That is, there exist prime rings R_1, \ldots, R_n whose direct sum contains R, such that $\hat{p}_i(R) = R_i$ for each coordinate map $\hat{p}_i: R \rightarrow R_i$, and

(3) $R \cap R_i \neq \{0\}$, $i = 1, \ldots, n$.

The ideals ker \hat{p}_i are the maximal two-sided annihilator ideals of R [4, Theorem 3.2].

Another fact which we will need is that if R has the ACC on left and right annihilators, then each R_i satisfies the same conditions. To prove this, we first observe that each two-sided ideal I of R which is an annihilator right ideal is also an annihilator left ideal. Next, we observe that the inverse image B in R of each annihilator right (left) ideal \overline{B} in $\overline{R} = R/I$ is an annihilator right (left) ideal of R. Thus, if $I = X^r$ and $\overline{B} = \overline{Y}^r$ then $B = (XY)^r$, and similarly for left annihilators. Consequently, each $R_i \cong R/\ker \hat{p}_i$ has the ACC on left and right annihilators.
Now let A be a large right ideal of R and let $A_i = p_i(A)$. We show that $A \cap A_i$ is a large right ideal of R_i. If B_i is a nonzero right ideal of R_i, then $B_i(R \cap R_i)$ is a nonzero right ideal of both R and R_i since R is prime and $R \cap R_i \neq 0$. Since A is large in R, A meets $B_i(R \cap R_i)$ nontrivially. But every element of this "meet" belongs to A and B_i, hence to R_i, and hence to A_i. Thus $A \cap A_i$ meets B_i as desired.

Now, by the prime case of the theorem, each $A \cap A_i$ contains a regular element a_i of R_i. The element $a_1 + a_2 + \cdots + a_n$ of A is thus regular in R, and the proof of the theorem is complete.

Bibliography

UNIVERSITY OF NEW HAMPSHIRE AND
UNIVERSITY OF WISCONSIN