NOTE ON A THEOREM OF BEURLING

MAX L. WEISS

1. Introduction. In [3] Somadasa proved the following theorem:

Theorem [3, p. 297]. Let \(\mu \) be a fixed number greater than or equal to 1. Then, corresponding to each point \(e^{i\theta} \) on the unit circle, \(C \), in the complex plane, we can construct a class of Blaschke products with the property that each member of this class has \(T_\mu \)-limit zero at \(e^{i\theta} \). Further, there exists a nonempty subclass of this class with the property that each member of this subclass has \(T_\mu \)-limit zero at \(e^{i\theta} \) for all values of \(\mu \).

The purpose of this note is to prove a (slightly stronger form of a) theorem (Theorem 1, below) of Beurling [4]. (No detailed proof of Beurling's Theorem exists in the literature.) This theorem in turn generalizes the result of Somadasa in two directions. First, the class of Blaschke products is replaced by a much larger class of bounded analytic functions. Second, the restriction to \(T_\mu \)-limits is replaced by essentially arbitrary approaches.

2. Beurling's Theorem. Let \(D \) denote the open unit disc in the complex plane, \(C \), the unit circle, \(H^\infty \), the collection of all bounded analytic functions on \(D \). The pseudo-hyperbolic metric, \(\chi \), on \(D \) is defined by \(\chi(z, w) = |z - w| / |1 - \bar{z}w| \). We recall two classical theorems from the theory of complex variables.

Pick's Theorem [1, p. 48]. Let \(f \in H^\infty \), and suppose \(f \) maps into \(D \). Then for any two points \(z, w \in D \) one has

\[
\chi(f(z), f(w)) \leq \chi(z, w).
\]

Lindelöf's Theorem [1, p. 76]. Let \(G \) be a region bounded by a simple closed curve \(\Gamma \), let \(p \in \Gamma \). Let \(f \) be continuous on \((G \cup \Gamma) - \{p\} \), bounded and analytic on \(G \). If \(f(z) \) approaches the value \(a \) at \(p \) as \(z \) approaches \(p \) from either direction on \(\Gamma \), then \(f(z) \) approaches \(a \) as \(z \) tends to \(p \) through \(G \cup \Gamma - \{p\} \).

Recall that a sequence \(\{z_n\} \) in \(D \) is a Blaschke sequence if and only if \(\sum 1 - |z_n| \) converges. With this terminology and the above two theorems we prove

Received by the editors January 1, 1967.

1 The author was supported in part by Grant NSF GP-6118 of the National Science Foundation.
Theorem 1. Let K be a compact subset of $D \cup \Gamma$ such that $K \cap \Gamma = \{e^{i\theta}\}$. Then there exists a Blaschke sequence $\{z_n\}$ in D, $z_n \to e^{i\theta}$ with the property that whenever $f \in H^\infty$ and $f(z_n) \to 0$, then
$$\lim_{z \to e^{i\theta}: z \in K} f(z) = 0.$$

Proof. We may assume $e^{i\theta} = 1$. Let K' be the convex hull of $K \cup \overline{K}$, where \overline{K} is the set of conjugates of the points of K. Let γ' be the boundary of K'. By Lindelöf's Theorem to prove the present theorem it is enough to construct a Blaschke sequence $\{z_n\}$ on γ' with the property that if $f \in H^\infty$ and $f(z_n) \to 0$, then $f(z) \to 0$ as $z \to 1$ on γ'. Now, the union of two Blaschke sequences tending to 1 is again a Blaschke sequence tending to 1 and γ' is symmetric about the real axis. So it is sufficient to find a sequence $\{z_n\}$ on the part, γ, of γ' terminating at 1 which lies above the real axis such that $f(z_n) \to 0$ implies $f(z) \to 0$ as $z \to 1$ along γ. We will use these additional properties of γ: γ is convex hence, rectifiable; as z proceeds along γ to 1, $|z|$ and $\text{Re}(z)$ increase monotonely to 1. Denote the Euclidean arclength measured along γ between z, $w \in \gamma$ by $\gamma(z, w)$.

With these preliminaries we proceed with the construction of $\{z_n\}$. Choose a point w_1 on γ. Let w_2 be that point on γ satisfying $|w_2| > |w_1|$ and $\gamma(w_1, w_2) = 1 - |w_2|$. There is such a point since the length of γ exceeds $1 - |w_1|$. This same procedure continued indefinitely from w_1 by induction yields a sequence $\{w_n\}$ on γ such that $\gamma(w_n, w_{n+1}) = 1 - |w_{n+1}|$ and $|w_n| \to 1$. The latter follows since $\sum_{n=1}^{\infty} (1 - |w_{n+1}|) = \gamma(w_1, 1) < \infty$, and this also proves that $\{w_n\}$ is a Blaschke sequence. It is easy to find a sequence $\{N_n\}$ of integers with $N_n \to \infty$ while $\sum_{n=1}^{\infty} N_n (1 - |w_{n+1}|)$ is still convergent. Construct a new Blaschke sequence $\{z_n\}$ on γ consisting for each n of the points $w_n = w_{n,0}$, $w_{n,1}$, ..., $w_{n,N_n} = w_{n+1}$, where $\gamma(w_{n,j}, w_{n,j+1}) = N_n^{-1} \gamma(w_n, w_{n+1})$, $j = 0, \ldots, N_n - 1$. Let z be any point on γ between $w_{n,j}$ and $w_{n,j+1}$ inclusive. Then

$$N_n |z - w_{n,j+1}| \leq N_n \gamma(z, w_{n,j+1}) \leq N_n \gamma(w_n, w_{n,j+1}) = 1 - |w_{n+1}| \leq 1 - |w_{n,j+1}|.$$

Thus,

$$\chi(z, w_{n,j+1}) \leq \frac{|z - w_{n,j+1}|}{1 - |w_{n,j+1}|} \leq \frac{1}{N_n}.$$

Now, suppose $f \in H^\infty$, $f(z_n) \to 0$, and, without loss of generality, that $|f|$ is bounded by 1. Then, by Pick's Theorem and the last inequality
\[\chi(f(z), f(w_{n, j+1})) \leq 1/N_n \to 0. \]

Since \(f(w_{n, j+1}) \to 0, f(z) \to 0 \) as \(z \to 1, z \in \gamma \). This completes the proof.

In particular, the Blaschke product with zeros \(\{z_n\} \) tends to zero as \(z \to e^{i\theta} \) through \(K \). By definition a function \(f \in \mathcal{H}^\infty \) has \(T_\mu \)-limit zero at \(1, \mu \geq 1 \), in case \(f(z) \to 0 \) as \(z \to 1 \) through the sets

\[K(m, \mu) = \{z: 1 - |z| \geq m(\arg z)^\mu, 0 < |z| < 1\} \]

for each \(m > 0 \). Thus, it is clear how Somadasa's Theorem may be obtained from Theorem 1.

Theorem 1 also points out that the approaches to 1 through the sets \(K(m, \mu), m > 0, \mu \geq 1 \), fall rather short of exhausting the different possible tangential approaches to 1. For let \(\gamma \) be a convex curve in \(D \cup \Gamma, \gamma \cap \Gamma = 1 \), which is symmetric about the real axis. Then, from the proof of Theorem 1, there is a Blaschke product, \(B(z) \), whose zeros are on \(\gamma \) and which tends to zero as \(z \to 1 \) inside the curve \(\gamma \). Furthermore, as is well known (e.g., see [2, p. 35]) \(B(z) \) tends to each number of modulus not exceeding 1 on some sequence \(\{z_n\} \) tending to 1. Each of the sequences must approach 1 more tangentially than the curve \(\gamma \). This situation persists independent of how large an order of contact at 1 is chosen for \(\gamma \).

References

University of California, Santa Barbara