ON THE EXISTENCE THEOREM FOR DIFFERENTIAL EQUATIONS

JOEL W. ROBBIN

In this note we show how to derive the fundamental existence theorem for ordinary differential equations as a corollary of the implicit function theorem in Banach spaces. The proof of smoothness with respect to initial conditions is considerably shorter than existing proofs (see, for example [3], [4], or [5]). Throughout, a dot (i.e., \(\dot{t} \)) denotes differentiation with respect to \(t \).

Theorem. Let \(U \) be an open set in a Banach space \(E \) and let \(f: \mathbb{R} \times U \rightarrow E \) be a \(C^r \) map \((r \geq 1)\). Then for each \(x_0 \in U \) there exists an open neighborhood \(V \) of \(x_0 \) in \(U \), an open interval \((-\epsilon, \epsilon)\) about 0 in \(\mathbb{R} \) and a map \(\phi: (-\epsilon, \epsilon) \times V \rightarrow U \) such that

1. \(\phi \) is \(C^r \);
2. \(\phi(0, x) = x \) for \(x \in V \);
3. \(\phi(t, x) = f(t, \phi(t, x)) \) for \((t, x) \in (-\epsilon, \epsilon) \times V \).

Proof. We suppose without loss of generality that \(x_0 \) is the origin of \(E \) and that \(U \) is an open ball with center \(x_0 \). Take \(U_0 \) to be the open ball whose center is \(x_0 \) and whose radius is half the radius of \(U \). Let \(I \) denote the closed interval \([-1, 1] \subseteq \mathbb{R} \). For \(p \) an integer \(\geq 0 \) let \(C^p(I, E) \) denote the Banach space of \(C^p \) maps from \(I \) to \(E \) (with the \(C^p \) topology), \(C^p_0(I, E) \) be the (closed) subspace of \(C^p(I, E) \) consisting of all \(\gamma \in C^p(I, E) \) with \(\gamma(0) = 0 \), and \(C^p_0(I, U_0) \) the set of all \(\gamma \in C^p_0(I, E) \) such that \(\gamma(I) \subseteq U_0 \). Note that \(C^p_0(I, U_0) \) is open in the Banach space \(C^p_0(I, E) \). \(D \) denotes the differentiation operator (see [4] or [5]) and \(D_j \) denotes partial differentiation with respect to the \(j \)th variable.

Let \(F: \mathbb{R} \times U_0 \times C^0_0(I, U_0) \rightarrow C^0_0(I, E) \) be the map defined by

\[
F(a, x, \gamma)(t) = \gamma(t) - af(at, x + \gamma(t))
\]

for \(a \in \mathbb{R}, x \in U_0, \gamma \in C^0_0(I, U_0) \) and \(t \in I \). One easily verifies that \(F \) is a \(C^1 \) map between Banach spaces. (This is an especially easy instance of the so-called omega theorem of [1]. Note that the map \(\gamma \rightarrow \gamma \) is continuous linear.) The partial derivative with respect to \(\gamma \) at the point \(a = 0, x = x_0, \gamma = 0 \) evaluated at the “tangent vector” \(\delta \in C^0_0(I, E) \) is given by

Received by the editors October 5, 1967.

1 I am indebted to R. Abraham for suggesting this to me.
\[D_2 F(0, x_0, 0) \delta(t) = \dot{\delta}(t); \]

it is clearly a toplinear isomorphism. Since \(F(0, x_0, 0) = 0 \) we may apply the implicit function theorem [4, p. 265]. This yields an open neighborhood \((-2\epsilon, 2\epsilon) \times V \) of \((0, x_0)\) in \(\mathbb{R} \times U_0 \) and a \(C^1 \) map \(H: (-2\epsilon, 2\epsilon) \times V \rightarrow C^0_0(I, U_0) \) such that
\[
F(a, x, H(a, x)) = 0
\]
for \((a, x) \in (-2\epsilon, 2\epsilon) \times V \). We define \(\phi: (-\epsilon, \epsilon) \times V \rightarrow U \) by
\[
\phi(t, x) = H(\epsilon, x)(t/\epsilon) + x.
\]
\(\phi \) is \(C^1 \): this follows immediately from the fact that the evaluation map \(C^0_0(I, U_0) \times I \rightarrow U_0 \) is \(C^1 \) (see [1] or [2, p. 25]). \(\phi(0, x) = x \) since \(H(\epsilon, x) \in C^0_0(I, U_0) \). Finally, since
\[
\phi(t, x) - f(t, \phi(t, x)) = (1/\epsilon)F(\epsilon, x, H(\epsilon, x))(t/\epsilon) = 0
\]
it follows that \(\phi \) is the solution curve. We have proved the theorem in the case \(r = 1 \). The general case follows from the case \(r = 1 \) by an easy (and standard) induction argument.

Bibliography

University of Wisconsin