A note on finite groups in which normality is transitive
HTML articles powered by AMS MathViewer
- by Derek J. S. Robinson
- Proc. Amer. Math. Soc. 19 (1968), 933-937
- DOI: https://doi.org/10.1090/S0002-9939-1968-0230808-9
- PDF | Request permission
References
- Steven Bauman, $p$-normality and $p$-length of a finite group, Math. Z. 87 (1965), 345–347. MR 178071, DOI 10.1007/BF01113204
- Wolfgang Gaschütz, Gruppen, in denen das Normalteilersein transitiv ist, J. Reine Angew. Math. 198 (1957), 87–92 (German). MR 91277, DOI 10.1515/crll.1957.198.87
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- Derek J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc. 60 (1964), 21–38. MR 159885, DOI 10.1017/s0305004100037403 J. S. Rose, The abnormal structure of finite groups, Ph.D. Dissertation, Cambridge Univ., 1964.
- John S. Rose, On a splitting theorem of Gaschütz, Proc. Edinburgh Math. Soc. (2) 15 (1966), 57–60. MR 197543, DOI 10.1017/S0013091500013353
- Eugene Schenkman, Group theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1965. MR 0197537
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 933-937
- MSC: Primary 20.25
- DOI: https://doi.org/10.1090/S0002-9939-1968-0230808-9
- MathSciNet review: 0230808