A NOTE ON ASYMPTOTIC STABILITY

OTTO PLAAT

1. Introduction. We consider a system of linear differential equations of the form

\[\dot{x} = [A + \epsilon B(t)]x \]

where \(x \) is an \(m \)-vector, \(A \) and \(B(t) \) are complex \(m \times m \) matrices, \(A \) is constant and skew-Hermitian \((A^* = -A) \), \(B \) is continuous for all real \(t \) and of period \(\omega > 0 \), and \(\epsilon \) is a small positive number. The problem of deciding the asymptotic behavior of the solutions of such a system is a common one in perturbation theory. The standard procedure for establishing the asymptotic stability of the trivial solution is to show that the characteristic multipliers have modulus less than 1 by expanding them in powers of \(\epsilon \) [1]. If \(A \) and \(B \) depend on a number of parameters, as is usually the case, the computations may be formidable. However, it is possible to exploit the fact that \(A \) is skew-Hermitian to obtain a sufficient condition for asymptotic stability which considerably reduces the computational labor—in some cases to little more than the inspection of a certain Hermitian matrix.

We employ the following terminology. If \(\phi(t) \), \(W(t) \) are \(m \times m \) matrices continuous for real \(t \) and \(\dot{W}(t) = \phi(t)W(t) \), \(W(0) = I \), we say that \(W \) is the fundamental matrix of \(\dot{x} = \phi(t)x \). \(C^* \) denotes the adjoint (conjugate transpose) of \(C \).

Theorem. Let \(A \) be skew-Hermitian and \(B(t) \) continuous and of period \(\omega > 0 \). Let \(W_0 \) be the fundamental matrix of \(\dot{x} = Ax \) and define \(C_n = \int_0^\omega W_0^*(t)B(t)W_0(t)dt \). If for some positive integer \(n \), \(C_n + C_n^* \) is negative definite, then for sufficiently small positive \(\epsilon \) the trivial solution of (1) is asymptotically stable.

2. Lemmas. All matrices will be \(m \)-square. \(\| T \| \) is the operator norm of \(T \),

\[\| T \| = \max \{ \| Tx \| ; \| x \| = 1 \}, \text{ where } \| x \| = \left(\sum_{i=1}^m x_i^2 \right)^{1/2}. \]

\(\rho[T] \) is the maximum of the absolute values of the eigenvalues of \(T \). Thus \(\| T \|^2 = \rho[T^*T] \). We note that if \(W_0 \) is the fundamental matrix of \(\dot{x} = Ax \), where \(A^* = -A \), then \(W_0^*(t) = W_0^{-1}(t) \). We choose to circumvent Floquet's theorem by means of the following trivial lemma.

Received by the editors June 9, 1967.
Lemma 1. Let W be the fundamental matrix of $\dot{x} = \phi(t)x$, ϕ continuous and of period $\omega > 0$. $W(t) \to 0$ as $t \to \infty$ if (and only if) $\|W(n\omega)\| < 1$ for some positive integer n.

Proof. $W(s+n\omega) = W(s)W^n(\omega)$ for all real s and integers n. Since any t can be written $t = s + n\omega$, $0 \leq s < \omega$, we have $W(t) = W(s)W^n(\omega)$, where $0 \leq s < \omega$. The condition of asymptotic stability of the trivial solution, $W(t) \to 0$ as $t \to \infty$, thus takes the form $W^n(\omega) \to 0$ as $n \to \infty$. But this is equivalent to $\|W^n(\omega)\| < 1$ for some $n > 0$. Since $W^n(\omega) = W(n\omega)$, the lemma is proved.

Lemma 2. Let $V(\epsilon) = I + \epsilon C + \epsilon^2 R(\epsilon)$, where C is a matrix such that $C + C^*$ is negative definite, and $R(\epsilon)$ is continuous in ϵ. Then $\|V(\epsilon)\| < 1$ for sufficiently small positive ϵ.

Proof. $\|V(\epsilon)\|^2 = \rho [V(\epsilon) V^*(\epsilon)]$. Multiplying out yields $V(\epsilon) V^*(\epsilon) = I + \epsilon T(\epsilon)$, where $T(\epsilon) = C + C^* + \epsilon S(\epsilon)$, S being continuous and Hermitian. By continuity, there is $\epsilon_0 > 0$ such that $T(\epsilon)$ is negative definite for $|\epsilon| < \epsilon_0$. It follows that if $0 < \epsilon < \epsilon_0$ and λ is an eigenvalue of $V(\epsilon) V^*(\epsilon)$, then $0 < \lambda < 1$.

3. Proof of the Theorem. Let $W(t, \epsilon)$ be the fundamental matrix of (1) and write $W(t, \epsilon) = W_0(t) V(t, \epsilon)$. Then

$$V(t, \epsilon) = I + \epsilon \int_0^t W_0^{-1}(s) B(s) W_0(s) V(s, \epsilon) ds.$$

Substituting for V in the integrand and replacing W_0^{-1} by W_0^* yields

$$V(t, \epsilon) = I + \epsilon \int_0^t W_0^*(s) B(s) W_0(s) ds + \epsilon^2 R(t, \epsilon),$$

where R is continuous. Let n be a positive integer for which $C_n + C_n^*$ is negative definite. Then by Lemma 2, $\|V(n\omega, \epsilon)\| < 1$ for sufficiently small positive ϵ. Since W_0 is unitary, $\|W(t, \epsilon)\| = \|V(t, \epsilon)\|$. Lemma 1 concludes the proof.

The theorem is easily extended to the case that $B = B(t, \epsilon)$ provided B and $\partial B/\partial \epsilon$ are continuous for $|\epsilon|$ small. Except for the replacement of $B(t)$ by $B(t, 0)$ in the definition of C_n, the theorem and proof are unaltered.

The freedom offered by the arbitrariness of n can result in an appreciable computational simplification. If, for example, the off-diagonal entries of $C_n + C_n^*$ are bounded in n, while the diagonal entries tend to $-\infty$ with increasing n, the matrix is obviously negative definite for large n. Examples suggest that this situation is not unusual.
The author wishes to thank H. A. Antosiewicz for a suggestion which shortened the proof of the theorem.

Reference

University of San Francisco