A NOTE ON ASYMPTOTIC STABILITY

OTTO PLAAT

1. **Introduction.** We consider a system of linear differential equations of the form

$$\dot{x} = \left[A + \epsilon B(t)\right] x$$

where x is an m-vector, A and B(t) are complex $m \times m$ matrices, A is constant and skew-Hermitian $(A^* = -A)$, B is continuous for all real t and of period $\omega > 0$, and ϵ is a small positive number. The problem of deciding the asymptotic behavior of the solutions of such a system is a common one in perturbation theory. The standard procedure for establishing the asymptotic stability of the trivial solution is to show that the characteristic multipliers have modulus less than 1 by expanding them in powers of ϵ [1]. If A and B depend on a number of parameters, as is usually the case, the computations may be formidable. However, it is possible to exploit the fact that A is skew-Hermitian to obtain a sufficient condition for asymptotic stability which considerably reduces the computational labor—in some cases to little more than the inspection of a certain Hermitian matrix.

We employ the following terminology. If $\phi(t)$, W(t) are $m \times m$ matrices continuous for real t and $\dot{W}(t) = \phi(t)W(t)$, W(0) = I, we say that W is the fundamental matrix of $\dot{x} = \phi(t)x$. C^* denotes the adjoint (conjugate transpose) of C.

THEOREM. Let A be skew-Hermitian and B(t) continuous and of period $\omega > 0$. Let W_0 be the fundamental matrix of $\dot{x} = Ax$ and define $C_n = \int_0^{n\omega} W_0^*(t)B(t)W_0(t)dt$. If for some positive integer n, $C_n + C_n^*$ is negative definite, then for sufficiently small positive ϵ the trivial solution of (1) is asymptotically stable.

2. Lemmas. All matrices will be *m*-square. ||T|| is the operator norm of T,

$$||T|| = \max \{||Tx||; ||x|| = 1\}, \text{ where } ||x|| = \left[\sum_{i=1}^{m} x_i \bar{x}_i\right]^{1/2}.$$

 $\rho[T]$ is the maximum of the absolute values of the eigenvalues of T. Thus $||T||^2 = \rho[TT^*]$. We note that if W_0 is the fundamental matrix of $\dot{x} = Ax$, where $A^* = -A$, then $W_0^*(t) = W_0^{-1}(t)$. We choose to circumvent Floquet's theorem by means of the following trivial lemma.

Received by the editors June 9, 1967.

LEMMA 1. Let W be the fundamental matrix of $\dot{x} = \phi(t)x$, ϕ continuous and of period $\omega > 0$. $W(t) \rightarrow 0$ as $t \rightarrow \infty$ if (and only if) $||W(n\omega)|| < 1$ for some positive integer n.

PROOF. $W(s+n\omega)=W(s)W^n(\omega)$ for all real s and integers n. Since any t can be written $t=s+n\omega$, $0 \le s < \omega$, we have $W(t)=W(s)W^n(\omega)$, where $0 \le s < \omega$. The condition of asymptotic stability of the trivial solution, $W(t) \to 0$ as $t \to \infty$, thus takes the form $W^n(\omega) \to 0$ as $n \to \infty$. But this is equivalent to $||W^n(\omega)|| < 1$ for some n > 0. Since $W^n(\omega) = W(n\omega)$, the lemma is proved.

LEMMA 2. Let $V(\epsilon) = I + \epsilon C + \epsilon^2 R(\epsilon)$, where C is a matrix such that $C + C^*$ is negative definite, and $R(\epsilon)$ is continuous in ϵ . Then $||V(\epsilon)|| < 1$ for sufficiently small positive ϵ .

PROOF. $||V(\epsilon)||^2 = \rho[V(\epsilon)V^*(\epsilon)]$. Multiplying out yields $V(\epsilon)V^*(\epsilon) = I + \epsilon T(\epsilon)$, where $T(\epsilon) = C + C^* + \epsilon S(\epsilon)$, S being continuous and Hermitian. By continuity, there is $\epsilon_0 > 0$ such that $T(\epsilon)$ is negative definite for $|\epsilon| < \epsilon_0$. It follows that if $0 < \epsilon < \epsilon_0$ and λ is an eigenvalue of $V(\epsilon)V^*(\epsilon)$, then $0 \le \lambda < 1$.

3. **Proof of the Theorem.** Let $W(t, \epsilon)$ be the fundamental matrix of (1) and write $W(t, \epsilon) = W_0(t) V(t, \epsilon)$. Then

$$V(t, \epsilon) = I + \epsilon \int_0^t W_0^{-1}(s) B(s) W_0(s) V(s, \epsilon) ds.$$

Substituting for V in the integrand and replacing W_0^{-1} by W_0^* yields

$$V(t, \epsilon) = I + \epsilon \int_0^t W_0^*(s)B(s)W_0(s)ds + \epsilon^2 R(t, \epsilon),$$

where R is continuous. Let n be a positive integer for which $C_n + C_n^*$ is negative definite. Then by Lemma 2, $\|V(n\omega, \epsilon)\| < 1$ for sufficiently small positive ϵ . Since W_0 is unitary, $\|W(t, \epsilon)\| = \|V(t, \epsilon)\|$. Lemma 1 concludes the proof.

The theorem is easily extended to the case that $B = B(t, \epsilon)$ provided B and $\partial B/\partial \epsilon$ are continuous for $|\epsilon|$ small. Except for the replacement of B(t) by B(t, 0) in the definition of C_n , the theorem and proof are unaltered.

The freedom offered by the arbitrariness of n can result in an appreciable computational simplification. If, for example, the off-diagonal entries of $C_n + C_n^*$ are bounded in n, while the diagonal entries tend to $-\infty$ with increasing n, the matrix is obviously negative definite for large n. Examples suggest that this situation is not unusual.

The author wishes to thank H. A. Antosiewicz for a suggestion which shortened the proof of the theorem.

REFERENCE

1. I. G. Malkin, *Theory of stability of motion*, translated from Russian, AEC-tr-3352, U. S. Atomic Energy Commission, Oak Ridge, Tenn. p. 224. (Available from the Office of Technical Services, Department of Commerce, Washington, D. C.)

University of San Francisco