On the $L^{1}$ norm and the mean value of a trigonometric series
HTML articles powered by AMS MathViewer
- by L. C. Kurtz and S. M. Shah
- Proc. Amer. Math. Soc. 19 (1968), 1023-1028
- DOI: https://doi.org/10.1090/S0002-9939-1968-0231108-3
- PDF | Request permission
References
- S. Chowla, Some applications of a method of A. Selberg, J. Reine Angew. Math. 217 (1965), 128–132. MR 172853, DOI 10.1515/crll.1965.217.128
- J. Chidambaraswamy and S. M. Shah, Trigometric series with non-negative partial sums, J. Reine Angew. Math. 229 (1968), 163–169. MR 223814, DOI 10.1515/crll.1968.229.163
- H. Halberstam and K. F. Roth, Sequences. Vol. I, Clarendon Press, Oxford, 1966. MR 0210679
- R. D. Halbgewachs and S. M. Shah, Trigonometric sums and Fresnel-type integrals, Proc. Indian Acad. Sci. Sect. A 65 (1967), 227–232. MR 212990, DOI 10.1007/BF03049400
- S. M. Shah, Trigonometric series with nonnegative partial sums, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 386–391. MR 0238016
- S. Uchiyama, On the mean modulus of trigonometric polynomials whose coefficients have random signs, Proc. Amer. Math. Soc. 16 (1965), 1185–1190. MR 185362, DOI 10.1090/S0002-9939-1965-0185362-4
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 19 (1968), 1023-1028
- MSC: Primary 42.05
- DOI: https://doi.org/10.1090/S0002-9939-1968-0231108-3
- MathSciNet review: 0231108