THE PRIMITIVE SPECTRUM OF A TENSOR PRODUCT OF C^* -ALGEBRAS

AUBREY WULFSOHN

Let A and B be separable C^* -algebras, $A \odot B$ their involutive algebraic tensor product and $A \otimes B$ their C^* -tensor product. Let Prim A denote the primitive spectrum, i.e. the Jacobson structure space, of A, and let \widehat{A} denote the spectrum of A [1, 2.9.7, 3.1.5]. Denote the homeomorphism $(\pi, \nu) \mapsto \pi \otimes \nu$ of $\widehat{A} \times \widehat{B}$ into $(A \otimes B)^{\hat{}}$ by γ [7]. We show that γ can be naturally projected to a homeomorphism of Prim $A \times \text{Prim } B$ onto Prim $A \otimes B$.

LEMMA 1. Let \mathfrak{d} be a primitive ideal of a C^* -algebra D. If the canonic homomorphism $D \rightarrow D/\mathfrak{d}$ is an isomorphism, then $\mathfrak{d} = 0$.

PROOF. Evident.

PROPOSITION. Every primitive ideal of $A \otimes B$ is of the form $\mathfrak{a} \otimes B + A \otimes \mathfrak{b}$, where $\mathfrak{a} \in \text{Prim } A$, $\mathfrak{b} \in \text{Prim } B$.

PROOF. Let $z \in c \cap (A \odot B)$, where c is a primitive ideal of $A \otimes B$. Suppose $c = \text{Ker } \mu$, where μ is a factor representation of $A \otimes B$, and let μ_1 , μ_2 be the restrictions of μ to A and B respectively [3]. Let $a = \text{Ker } \mu_1$, $b = \text{Ker } \mu_2$; since A and B are separable, $a \in \text{Prim } A$ and $b \in \text{Prim } B$ [2, p. 100]. So

$$z = \sum_{i=1}^{n} a_i \otimes y_i + \sum_{j=1}^{m} x_j \otimes b_j + \sum_{k=1}^{N} X_k \otimes Y_k,$$

where $a_i \in \mathfrak{a}$, $b_j \in \mathfrak{b}$; x_j , $X_k \in A$; y_i , $Y_k \in B$; $X_k \notin \mathfrak{a}$, $Y_k \notin \mathfrak{b}$. Thus

$$0 = \mu(z) = \mu\left(\sum_{k=1}^{N} X_{k} \otimes Y_{k}\right) = \sum_{k=1}^{N} \mu_{1}(X_{k})\mu_{2}(Y_{k}).$$

Using [5, Theorem III], there exists a $N \times N$ matrix $(\alpha_{i,j})$ such that $\sum_{i=1}^{N} \alpha_{i,j}\mu_1(X_i) = 0$, $\sum_{j=1}^{N} \alpha_{i,j}\mu_2(Y_j) = \mu_2(Y_i)$. Thus $\sum_{k=1}^{N} X_k \otimes Y_k \in \mathfrak{a} \odot B + A \odot \mathfrak{b}$, and so $\mathfrak{c} \cap (A \odot B) = \mathfrak{a} \odot B + A \odot \mathfrak{b}$. It is easily seen that $\|\mu(\cdot)\|$ is a compatible norm on $(A \odot B)/(\mathfrak{a} \odot B + A \odot \mathfrak{b})$. Since the C^* -tensor product norm is the smallest compatible norm on $A \odot B$ [6], its quotient norm will be the smallest compatible norm on $(A \odot B)/(\mathfrak{a} \odot B + A \odot \mathfrak{b})$, and so $\|\mu(z)\| \ge \|\dot{z}\|$, where $z \mapsto \dot{z}$ denotes the canonic homomorphism $A \otimes B \to (A \otimes B)/(\mathfrak{a} \otimes B + A \otimes \mathfrak{b})$. The canonic homomorphism

Received by the editors December 5, 1966.

$$(A \otimes B)/(\mathfrak{a} \otimes B + A \otimes \mathfrak{b}) \to (A \otimes B)/\mathfrak{c}$$

$$= [(A \otimes B)/(\mathfrak{a} \otimes B + A \otimes \mathfrak{b})]/[\mathfrak{c}/(\mathfrak{a} \otimes B + A \otimes \mathfrak{b})]$$

is thus an isomorphism. By Lemma 1, $\mathfrak{c} = \mathfrak{a} \otimes B + A \otimes \mathfrak{b}$.

COROLLARY 1. If π and ν are factor representations of A and B respectively, then Ker $\pi \otimes \nu = \text{Ker } \pi \otimes B + A \otimes \text{Ker } \nu$. Thus (Ker π , Ker ν) \mapsto Ker $\pi \otimes \nu$ is a well-defined mapping of Prim $A \times \text{Prim } B$ onto Prim $A \otimes B$.

PROOF. The restrictions of $\pi \otimes \nu$ to A and B are π and ν respectively.

COROLLARY 2. If a and b are primitive ideals of A and B respectively, then $a \otimes B + A \otimes b$ is a primitive ideal of $A \otimes B$.

PROOF. Let π , ν be factor representations of A, B respectively such that $\mathfrak{a} = \operatorname{Ker} \pi$, $\mathfrak{b} = \operatorname{Ker} \nu$. Then $\mathfrak{a} \otimes B + A \otimes \mathfrak{b}$ equals $\operatorname{Ker} \pi \otimes \nu$ and is thus primitive.

COROLLARY 3 (CF. [8, PROPOSITION 1]). If a and b are primitive ideals of A and B respectively, then $(A/\mathfrak{a}) \otimes (B/\mathfrak{b})$ is isomorphic to $(A \otimes B)/(\mathfrak{a} \otimes B + A \otimes \mathfrak{b})$.

LEMMA 2. The mapping α : $(\mathfrak{a}, \mathfrak{b}) \mapsto \mathfrak{a} \otimes B + A \otimes \mathfrak{b}$ is a bijection of Prim $A \times \text{Prim } B$ onto Prim $A \otimes B$.

PROOF. For \mathfrak{b} , $\mathfrak{b}' \in \text{Prim } B$, \mathfrak{a} , $\mathfrak{a}' \in \text{Prim } A$, $\mathfrak{a} \neq \mathfrak{a}'$, let $\mathfrak{a}' \ni x \in \mathfrak{a}$, $\mathfrak{b}' \ni y \notin \mathfrak{b}$. Injectivity follows since $\alpha(\mathfrak{a}', \mathfrak{b}') \ni x \otimes y \in \alpha(\mathfrak{a}, \mathfrak{b})$. Surjectivity follows from the proposition above.

THEOREM. The mapping α is a homeomorphism of Prim $A \times \text{Prim } B$ onto Prim $A \otimes B$.

PROOF. The diagram

$$\begin{array}{ccc} A \times \widehat{B} & \xrightarrow{\gamma} \gamma (A \times \widehat{B}) \\ \psi & & & \text{Ker} \\ \text{Prim } A \times \text{Prim } B \to \text{Prim } A \otimes B \end{array}$$

is commutative, ψ denoting the canonic mapping.

REMARK. The C^* -algebra enveloping $\bigoplus_{\pi \in \widehat{A}, \nu \in \widehat{B}} \pi(A) \otimes \nu(B)$, where $\pi(A) \otimes \nu(B)$ is the algebra-of-operators tensor product of $\pi(A)$ and $\nu(B)$, has spectrum $\gamma(\widehat{A} \times \widehat{B})$. It defines a tensor product equivalent in general neither to $A \otimes B$ nor to the "projective" tensor product of Guichardet [4].

BIBLIOGRAPHY

- 1. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
 - 2. ——, Sur les C*-algèbres, Bull. Math. Soc. France 88 (1960), 95-112.
- 3. A. Guichardet, Caractères et représentations des produits tensoriels de C*-algèbres, Ann. Sci. École Norm. Sup. 81 (1964), 189-206.
- 4. ——, Tensor product of C*-algebras, Dokl. Akad. Nauk SSSR 160 (1965), 986-989 = Soviet Math. Dokl. 6 (1965), 210-213.
- 5. F. J. Murray and J. von Neumann, On rings of operators, Ann. of Math. 37 (1936), 116-229.
- 6. M. Takesaki, On the cross-norm of the direct product of C*-algebras, Tôhoku Math. J. 16 (1964), 111-122.
- 7. A. Wulfsohn, Produits tensoriels de C*-algèbres, Bull. Sci. Math. 87 (1963), 13-27.
- 8. ——, Le produit tensoriel de certaines C*-algèbres, C. R. Acad. Sci. Paris 258 (1964), 6052-6054.

CENTRE DE PHYSIQUE THÉORIQUE, C.N.R.S., MARSEILLES, FRANCE