LINES IN A PLANAR SPACE

GRATTAN P. MURPHY¹

A planar space \(P \) is a set \(S \) together with a mapping \(A \) which attaches to each triple \((p, q, r) \) of points of \(S \) a real number \(A(p, q, r) \) and which satisfies:

(i) If \(p=q \), then \(A(p, q, r) = A(p, r, q) = A(r, p, q) = 0 \) for every \(r \).
(ii) For every \(p, q, r, s \), \(A(p, q, r) = A(p, q, s) + A(p, r, s) + A(q, r, s) \).
(iii) For any \(p, q, r, s \); if \(A(p, q, r) = A(p, q, s) = 0 \), then \(p = q \) or \(A(q, r, s) = A(p, r, s) = 0 \).

For convenience we will write \(pqr \) for \(A(p, q, r) \) for the remainder of the paper.

The usual example of such a space is the Euclidean \(n \)-space with the \(A \)-function interpreted as the area of a triangle with vertices \(p \), \(q \), and \(r \).

Spaces satisfying (i) and (ii) and a variety of conditions in place of (iii) have been studied by Menger [6], Blumenthal [2], Froda [3], Gähler [5] and Freese and Andalafte [4].

For \(a \neq b \) points of \(P \) we define \(L[a, b] = \{ x \mid abx = 0 \} \). It follows readily that if \(L(a, b) \) and \(L(c, d) \) are distinct sets, then \(L(a, b) \cap L(c, d) \) contains at most one point.

If \(p \in P \) is not an element of \(L(a, b) \), we define a distance for points \(x, y \) of \(L \) by setting \(d(x, y) = pxy \).

If \(x = y \), then \(pxy = 0 \), but \(d(x, y) = pxy = 0 \). If \(d(x, y) = 0 \), then \(pxy = 0 \) and, since \(x \) and \(y \) belong to \(L(a, b) \), \(xya = yxb = 0 \). Now, if \(x \neq y \), applying (iii) to the quadruple \(\{ p, x, y, a \} \) gives \(pxa = pya = 0 \). Application of (iii) to the quadruple \(\{ p, x, y, b \} \) gives \(pxb = pxb = 0 \). Then since \(pxa = pxb = 0 \), we have \(pab = xab = 0 \), also from (iii). However, \(pab > 0 \), since \(p \) is not in \(L(ab) \). Therefore, it must follow that \(x = y \).

Since condition (iii) may be variously applied to any three distinct points of \(S \) by letting \(s \) and another of the symbols \(p, q, r \) denote the same point, it follows that the \(A \)-function is symmetric. Symmetry of the distance function follows immediately. The tetrahedral inequality applied to \(\{ p, x, y, z \} \) gives \(pxy \leq pxz + pyz + xyz \). Since \(xyz = 0 \), we have \(d(x, y) \leq d(x, z) + d(y, z) \).

Consequently \(d(x, y) \) is a metric for \(L(a, b) \). The set \(L(a, b) \) with metric \(d \) is denoted \(M_p(a, b) \).

¹ This paper represents a portion of the author’s dissertation written under the direction of Raymond W. Freese at St. Louis University.

Presented to the Society, January 25, 1967; received by the editors June 10, 1967.

1106
We will utilize the following definitions.

A point b is said to be between a and c (denoted by $B(a, b, c)$) iff $abc = 0$, $acx = abx + bxc$ for every x and a, b and c are distinct.

A planar space P is convex iff for each pair of different points p and q there exists a between point.

A sequence of points $\{x_n\}$ in a planar space P has limit x iff $\lim pxx_n = 0$ for every p in P.

A sequence $\{x_n\}$ in a planar space P is convergent with respect to (a, b, c) iff $abc > 0$ and $\lim ax_i x_j = \lim bx_i x_j = \lim cx_i x_j = 0$.

A planar space is complete with respect to (a, b, c) iff for every sequence $\{x_i\}$ convergent with respect to (a, b, c), there exists a point x of P with $\lim x_i = x$.

Theorem. If P is a convex space which is complete with respect to (p, a, b), then $M_p(a, b)$ is a complete, convex metric space.

If x and z are elements of $M_p(a, b)$, then they are elements of P also. From convexity, there exists a y in P such that $B(x, y, z)$ holds. This gives $xyz = 0$, so that y is in $M_p(a, b)$, and $pxy + pyz = pzx$ which results in $d(x, y) + d(y, z) = d(x, z)$. But, then y is a between point of x and z, so that $M_p(a, b)$ is convex. If $\{x_n\}$ is a convergent sequence in $M_p(a, b)$, then $\lim d(x_i, x_j) = 0$. But this implies that $\lim pxx_j = 0$. Then, since $ax_i x_j = bx_i x_j = 0$ and $pab \neq 0$, $\{x_n\}$ is a convergent sequence with respect to (p, a, b). But P is complete with respect to (p, a, b) so there is an x in P which is the limit of $\{x_n\}$. From $abx_i = 0$ for every i, it follows that $abx = 0$ and that x is in $M_p(a, b)$, which is, therefore, complete.

A subset S of a planar space P is said to be A-congruent with a subset S' of a planar space P' (denoted $S \equiv S'$) iff there exists a 1-1 mapping of S onto S' such that $pqr = p'q'r'$, where p', q', r' are the images of p, q, and r.

Corollary. If each four points of P are A-congruent with four points of E_3, then $M_p(a, b)$ is congruently contained in E_3.

Let x, y, $z \in L(a, b)$ and be distinct points. Then $xyz = 0$. If each of the four points of P are A-congruently contained in E_3, then there exist p', x', y', and z' in E_3 with $p'x'y' = pxy$, $p'x'z' = pzx$, $p'y'z' = pyz$ and $x'y'z' = xyz = 0$. Consequentially x', y', and z' are collinear and p', x', y', and z' are coplanar. It follows that one of the points x', y', or z' is a between point of the other two. Let y' be the between point. Then $p'x'z' = p'x'y' + p'y'z'$ from which $pxz = pxy + pyz$ follows. But this gives $d(x, z) = d(x, y) + d(y, z)$ so that the three points are embed-
dable in E_1. There are more than four distinct points in $M_p(a, b)$ since $a \neq b$ and $M_p(a, b)$ is convex.

Since every semimetric space containing more than four points and having the property that each three of its points are embeddable in E_1 is embeddable in E_1 [1], $M_p(a, b)$ is congruently contained in E_1.

Bibliography

2. ———, *Distance geometries*, Univ. of Missouri Studies, 13, 1938, no. 2.

University of Maine