IRREDUCIBLE REPRESENTATIONS OF A SIMPLE LIE ALGEBRA ADMITTING A ONE-DIMENSIONAL WEIGHT SPACE

F. W. LEMIRE

Introduction. Let \mathcal{L} be a finite-dimensional, simple Lie algebra over an algebraically closed field \mathbb{F} of characteristic zero. In this paper we shall study the family of all linear irreducible (finite- or infinite-dimensional) representations of \mathcal{L} which admit a one-dimensional weight space. It is well known that this family includes all finite-dimensional irreducible representations of \mathcal{L}. More generally, we know that the weight space corresponding to the dominant weight function of Harish-Chandra’s irreducible representations with dominant weight functions is one dimensional [5]. Finally in a forthcoming paper, Bouwer studies a class of linear irreducible representations, called standard representations, which do not possess a dominant weight function but do admit a “characteristic weight function” whose weight space is one dimensional. It is the purpose of this paper to provide a characterization of all linear irreducible representations of \mathcal{L} admitting a one-dimensional weight space.

Preliminaries. Let Γ denote the set of all roots of \mathcal{L} with respect to the Cartan subalgebra \mathfrak{K}. Assuming that the roots of \mathcal{L} have been given a fixed order, let Γ^0 and Γ^+ denote the simple and positive roots of \mathcal{L} respectively. Finally, let

$$\Omega = \{X_\beta, Y_\beta, H_\alpha \mid \beta \in \Gamma^+; \alpha \in \Gamma^0\}$$

denote the usual Cartan basis of \mathcal{L} where, for each simple root $\alpha \in \Gamma^0$, we have $[X_\alpha, Y_\alpha] = H_\alpha; [X_\alpha, H_\alpha] = 2X_\alpha; \text{and } [Y_\alpha, H_\alpha] = -2Y_\alpha$ where $[\cdot, \cdot]$ denotes the Lie product in \mathcal{L}.

By the Poincaré-Birkhoff-Witt Theorem, the universal enveloping algebra $U(\mathcal{L})$ of \mathcal{L} admits a linear basis consisting of all elements of the form:

$$\prod_{\beta \in \Gamma^+} Y_\beta^{m(\beta)} \prod_{\alpha \in \Gamma^0} H_\alpha^{k(\alpha)} \prod_{\beta \in \Gamma^+} X_\beta^{n(\beta)},$$

Received by the editors May 1, 1967.

1 The results of this paper constitute one part of a doctoral dissertation written at Queen’s University, Kingston under the supervision of Professor A. J. Coleman.

2 The author is indebted to the Woodrow Wilson Fellowship and the National Research Council for their financial assistance during the period of this research.

3 For elementary definitions and properties of Lie algebras see [1], [6], [7].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where the exponents \(m(\beta), k(\alpha) \) and \(n(\beta) \) are all nonnegative integers and the products \(\prod \) each respect a fixed order over their index sets. Consider now the linear subspace \(C(\mathcal{L}) \) of \(U(\mathcal{L}) \) generated by all elements of the form (1) which also satisfy the following condition:

\[
\sum_{\beta \in \Gamma^+} (n(\beta) - m(\beta)) \beta = 0.
\]

By a simple (but tedious) inductive proof, we can show that \(C(\mathcal{L}) \) is in fact a subalgebra of \(U(\mathcal{L}) \), which we shall call the cycle subalgebra of \(U(\mathcal{L}) \). An element of the form (1) which also satisfies condition (2) is called an elementary cycle if, when considered as a commutative monomial, it cannot be written as the product of two nontrivial elements of \(C(\mathcal{L}) \). (For example \(Y_\beta X_\beta \) is an elementary cycle, whereas \(Y_\beta H_\alpha X_\delta \) is not an elementary cycle.) Using induction on the number of factors in the basis elements of \(C(\mathcal{L}) \) and the commutant relations on the basis elements of \(\mathcal{L} \), it is easily shown that the elementary cycles of \(C(\mathcal{L}) \) form a system of (algebra) generators of \(C(\mathcal{L}) \).

The cycle subalgebra \(C(\mathcal{L}) \) was originally introduced by Chevalley in his algebraic proof of the existence of simple Lie algebras corresponding to the various Cartan matrices \([4]\). Its relevance to our present study is brought out by the following result.

Lemma 1. Let \((\rho, V) \) be an irreducible representation of \(U(\mathcal{L}) \) which admits \(\lambda \) as a weight function. Then, if \(v \) is any nonzero element in the \(\lambda \)-weight space \(V_\lambda \) of \((\rho, V) \), we have

\[
\rho(C(\mathcal{L}))v = V_\lambda.
\]

Proof. This follows as a special case of Lemma 3 in Bouwer's paper \([3]\).

Let us now suppose the \(V_\lambda \) in the previous lemma is a one-dimensional weight space of the irreducible representation \((\rho, V) \). Then it is obvious that the identity (3) naturally induces an algebra homomorphism \(\gamma: C(\mathcal{L}) \to \mathfrak{g} \), where, for each \(c \in C(\mathcal{L}) \), we define \(\gamma(c) = f \), where \(\rho(c)v = fv \). It is readily verified that the map \(\gamma \) so defined is an algebra homomorphism and is independent of the particular choice of \(v \in V \). Moreover, \(\gamma \) when restricted to the Cartan subalgebra, \(\mathfrak{h} \) coincides with the weight function \(\lambda \). In general, any algebra homomorphism \(\zeta: C(\mathcal{L}) \to \mathfrak{g} \) for which there exists a nonzero vector \(v \in V \) with \(\rho(c)v = \zeta(c)v \) for all \(c \in C(\mathcal{L}) \) will be called a mass function of the representation \((\rho, V) \).

Construction of representations. So far we have established that every irreducible representation \((\rho, V) \) which admits a one-dimen-
sional weight function λ also admits a mass function γ which is an extension of λ. We shall now show that this process is essentially reversible—that is, given a nonzero algebra homomorphism $\gamma: C(\mathfrak{g}) \rightarrow \mathbb{F}$, we shall construct a unique irreducible representation which admits γ as a mass function. Moreover this representation will admit $\gamma \downarrow \mathfrak{h}$ as a one-dimensional weight function.

Let $\gamma: C(\mathfrak{g}) \rightarrow \mathbb{F}$ be a fixed algebra homomorphism. We first note that a linear basis of $U(\mathfrak{g})$, called the γ-basis, is provided by the set of all elements of the form

$$ x(u) \prod (c - \gamma(c) \cdot 1)^{n(c)} $$

where the indices $n(c)$ are all nonnegative integers, \prod is an ordered product ranging over the elementary cycles (different from 1), the elements $x(u)$ are well determined elements of the form (1) which do not contain any cycle different from 1 and priority of construction is given to cycles which appear to the right in the above product. We also denote by $I^*(\gamma)$ the left ideal of $U(\mathfrak{g})$ generated by $\{ c - \gamma(c) \cdot 1 \mid c \text{ is an elementary cycle of } U(\mathfrak{g}) \}$.

Lemma 2. $I^*(\gamma) \neq U(\mathfrak{g})$.

Proof. Clearly, $I^*(\gamma) \neq U(\mathfrak{g})$ iff $1 \notin I^*(\gamma)$. To establish that $1 \notin I^*(\gamma)$, it suffices to show that for any γ-basis element u of $U(\mathfrak{g})$ and for any elementary cycle c of $C(\mathfrak{g})$, the element $u(c - \gamma(c) \cdot 1)$ contains no nonzero multiples of 1 when expressed in terms of the γ-basis. By the form of the γ-basis elements, this may be reduced to showing that $(c_1 - \gamma(c_1) \cdot 1)(c_2 - \gamma(c_2) \cdot 1)$ when expressed in terms of the γ-basis of $U(\mathfrak{g})$ contains no nonzero multiple of 1, for any two elementary cycles c_1 and c_2. This follows from the fact that γ was assumed to be an algebra homomorphism.

Lemma 3. There exists a unique maximal left ideal $I(\gamma)$ of $U(\mathfrak{g})$ which contains $I^*(\gamma)$.

Proof. The existence of at least one maximal left ideal containing $I^*(\gamma)$ follows from an elementary argument using Zorn's Lemma. In order to establish the uniqueness of this maximal left ideal we note that there is a one-to-one correspondence between left ideals containing $I^*(\gamma)$ and invariant subspaces of the left regular representation $\tilde{\rho}$ of $U(\mathfrak{g})$ modulo $I^*(\gamma)$. Let V' be an invariant subspace of $(\tilde{\rho}, U(\mathfrak{g})/I^*(\gamma))$. Since γ restricted to \mathfrak{h} is a one-dimensional weight function of $\tilde{\rho}$ it follows that if V' is a proper invariant subspace then $V' \bigoplus_{\lambda \neq \gamma \downarrow \mathfrak{h}} V_{\lambda}$ where V_{λ} ranges over all λ-weight spaces of $\tilde{\rho}$ different from $V_{\gamma \downarrow \mathfrak{h}}$. Therefore the sum of all proper $\tilde{\rho}$-invariant sub-
spaces is again a proper \bar{p}-invariant subspace and is uniquely determined as the largest proper \bar{p}-invariant subspace.

Lemma 4. The left regular representation of $U(\mathfrak{L})$ modulo $I(\gamma)$ is a linear irreducible representation of $U(\mathfrak{L})$ admitting γ as a mass function.

Proof. The maximality of $I(\gamma)$ insures that this representation is irreducible. In order to check that γ is a mass function, we note that $1 + I(\gamma) \neq I(\gamma)$, and, for any element $c \in C(\mathfrak{L})$, we have

$$c(1 + I(\gamma)) = c + I(\gamma),$$

$$\equiv \gamma(c) \cdot 1 + I(\gamma) \mod I(\gamma),$$

$$\equiv \gamma(c)(1 + I(\gamma)) \mod I(\gamma).$$

Lemma 5. Let (ρ, V) be an irreducible representation of $U(\mathfrak{L})$ admitting γ as a mass function. Then (ρ, V) is equivalent to the left regular representation of $U(\mathfrak{L})$ modulo $I(\gamma)$.

Proof. Let v be a fixed nonzero element of the $(\gamma \downarrow \mathfrak{C})$-weight space of (ρ, V). Then the map $\phi: U(\mathfrak{L})/I(\gamma) \to V$ defined by $\phi: u + I(\gamma) \to \rho(u)v$ is an isomorphism which establishes the equivalence of the two representations.

Summarizing the results of Lemmas 2 through 5 we have the following theorem.

Theorem. Given any algebra homomorphism $\gamma: C(\mathfrak{L}) \to \mathfrak{F}$ then there exists a unique irreducible representation of $U(\mathfrak{L})$ admitting γ as a mass function. Moreover, the restriction of γ to the Cartan subalgebra \mathfrak{C} is a one-dimensional weight function of this representation.

Remark. A more detailed study of the properties of irreducible representations characterized by mass functions w will be published at a later date.

Bibliography