DENSITIES IN ARITHMETIC PROGRESSIONS

MORRIS GOLDFELD

Let $S = \{ s_1, s_2, \cdots \}$ be a set of positive integers. Then the density of S (denoted by $d(S)$) is the \(\lim_{n \to \infty} S(n)/n \), if the limit exists, where $S(n)$ is the number of integers in S that are less than or equal to n. Clearly, if A is an arithmetic progression of difference a, then $d(A) = 1/a$.

If we consider the algebra consisting of all finite unions of arithmetic progressions, then it can easily be shown that the density function is a finitely additive measure on this algebra. The chief obstruction to our knowledge about the density function lies in the fact that the density does not extend to the σ-algebra. In certain cases, however, it does. This paper is concerned with those cases; and in particular with the arithmetic progressions A_i with differences a_i satisfying the following condition

\[
d(\bigcap A_i) = \prod (1 - 1/a_i)
\]

where the intersection and product run through $i = 1, 2, 3, \cdots$ and where \overline{A}_i denotes the complement of A_i. It will be shown if the preceding condition is satisfied that one can give fairly simple expressions for the density of $\bigcap A_i$ in an arithmetic progression, if the density exists in that progression. It seems to be true that if (1) holds then $d((\bigcap A_i) \cap B)$ exists for any arithmetic progression B although I do not see how to prove it.

Let $\{a_1, a_2, \cdots \}$ be a set of pairwise relatively prime positive integers. Let A_i be the set of all positive multiples of a_i. Put $S = \bigcap A_i$. We shall prove the following general theorem on the density of $S \cap B$, where B is the set of all positive multiples of b for an arbitrary positive integer b.

Theorem. Let $b = b'q_1q_2 \cdots q_s$, where b' is (for each i) relatively prime to (a_i/q_i) and q_k is the greatest common divisor of b and a_k. Then if

\[d(S) = \prod (1 - 1/a_i),\]

we must also have

\[d(B \cap S) = \frac{1}{b'} \prod_{k=1}^{s} \left(\frac{a_k/q_k - 1}{a_k - 1} \right) \prod (1 - 1/a_i)\]

if the density of $B \cap S$ exists.

Received by the editors April 25, 1967.
Proof. Let \(|A| \) denote the number of elements in any set \(A \). Also let \(I_n = \{1, 2, \ldots, n\} \) be the set containing the first \(n \) integers.

Put \(S_r = \bigcap_{i=1}^{\infty} A_i \) and \(S_r(n) = |S_r \cap I_n| \). We consequently have by virtue of the definition of density

\[
d(S) = \lim_{n \to \infty} \frac{1}{n} \left(\lim_{r \to \infty} S_r(n) \right)
\]

Since \(d(S) \) exists (by assumption) it does not matter through what sequence of \(n \) we reach our limit, as long as we choose \(n \) constantly increasing.

Let \(n_j = \prod_{i=1}^{l-1} a_i \). We then have,

\[
d(S) = \lim_{j \to \infty} \frac{1}{b_{nj}} \left(\lim_{r \to \infty} S_r(b_{nj}) \right).
\]

But \(A_v \cap I_{b_{nj}} = I_{b_{nj}} \) for \(v \geq b_{nj} \) since \(A_i \) contains all the integers less than \(a_i \) for each \(i \). Hence,

\[
\lim_{r \to \infty} S_r(b_{nj}) = S_{b_{nj}}(b_{nj}) = S_{b_{nj}}(b_{nj}) - X(b, j),
\]

where \(X(b, j) \) is the error.

On making use of the exclusion-inclusion principle, we see that

\[
S_{b_{nj}}(b_{nj}) = b \prod_{i=1}^{j} (a_i - 1).
\]

Putting all this back into the expression for density yields

\[
d(S) = \prod_{i=1}^{j} (1 - 1/a_i) - \lim_{j \to \infty} X(b, j)/n_j,
\]

and since \(d(S) = \prod_{i=1}^{j}(1-1/a_i) \) by assumption, this makes

\[
(2) \quad \lim_{j \to \infty} X(b, j)/n_j = 0.
\]

Now, let \(S_r(B, n) = |S_r \cap B \cap I_n| \). Then

\[
d(B \cap S) = \lim_{j \to \infty} \frac{1}{b_{nj}} \left(\lim_{r \to \infty} S_r(B, b_{nj}) \right) = \lim_{j \to \infty} \frac{1}{b_{nj}} (S_{b_{nj}}(B, b_{nj}))
\]

as before. We now put
\[S_{bn_j}(B, bn_j) = S_j(B, bn_j) - X^1(b, j) \]

where \(X^1(b, j) \leq X(b, j) \) for all \(j \). Making use of the exclusion-inclusion principle once again, we see that

\[S_j(B, bn_j) = \frac{b}{b'} \prod_{k=1}^{s} \frac{a_k/q_k - 1}{a_k - 1} \prod_{i=1}^{j} (a_i - 1). \]

Therefore,

\[d(B \cap S) = \frac{1}{b'} \prod_{k=1}^{s} \frac{a_k/q_k - 1}{a_k - 1} \prod_{i=1}^{j} (1 - 1/a_i) - \lim_{j \to \infty} X(b, j)/n_j, \]

and since \(X^1(b, j) \leq X(b, j) \), this makes (by equation (2))

\[\lim_{j \to \infty} X^1(b, j)/n_j = 0. \]

Q.E.D.

Corollary (1). Let \(\{a_1, a_2, \ldots\} \) be a set of pairwise relatively positive integers with \(A_i \) denoting the set of positive multiples of \(a_i \). Also, let \(X_k \) denote the number of integers less than \(\prod_i a_i \) which are not divisible by any \(a_i \), \(0 < i \leq k \), and divisible by some \(a_j \) where \(k < j \leq \prod_i a_i \). Then if (1) holds, we must also have

\[\lim_{k \to \infty} \frac{X_k}{\prod_i a_i} = 0. \]

Proof. The proof follows immediately from the proof of the preceding theorem (by equation (2)) if we can show that

(3)
\[X_k = S_k(n_k) - S_{nk}(n_k) = X(1, k). \]

But the right side of (3) is just what we mean by \(X_k \).

Q.E.D.

As an application of the theorem we consider the problem of finding the density of squarefree integers in an arithmetic progression.

Corollary (2). Let \(B = \{b, 2b, 3b, \ldots\} \) where \(b \) is squarefree and can be factored into primes \(q_1 q_2 \cdots q_s \); then we have (for \(S = \) squarefree integers)

\[d(B \cap S) = \frac{6}{\pi^2} \prod_{i=1}^{s} (1/(q_i + 1)) \]

if the density exists.

Proof. Let \(A_i \) consist of the positive multiples of \(q_i^2 \) for \(i = 1, \ldots, s \). Let \(\{p_{s+1}, p_{s+2}, \ldots\} \) be the set of all primes relatively prime to \(b \).
We let A_j denote the set of all positive multiples of p_j^2 for $j > s$. Then $S = \bigcap A_j$ is nothing more than the set of squarefree integers. But we already know that [1, p. 269]

$$d(S) = \prod (1 - 1/p^2) = 6/\pi^2,$$

where the product is over all primes p. Hence S satisfies the condition (1). By the result of our theorem, we must therefore have

$$d(B \cap S) = \prod_{k=1}^{s} \frac{q_k^2/q_k - 1}{q_k^2 - 1} \prod (1 - 1/p^2)$$

$$= \frac{6}{\pi^2} \prod 1/(q_k + 1).$$

Q.E.D.

Reference

Columbia University