PRIME IDEAL STRUCTURE OF RINGS OF
BOUNDLED CONTINUOUS FUNCTIONS

MARK MANDELKER

Introduction. The order structure of the family of prime ideals in
the ring C of all real-valued continuous functions on a topological
space has been extensively studied; in this paper we study the ana-
logous problem in the subring C^* of bounded functions. The funda-
mental property of prime ideals in C^* is the following.

Main Theorem. Let M^* be any maximal ideal of C^* and let M be
the unique maximal ideal of C such that the prime ideal $M \cap C^*$ is con-
tained in M^*. Then every prime ideal contained in M^* is comparable
with $M \cap C^*$.

The proof involves topological properties of the Stone-Čech com-
pactification βX of a completely regular Hausdorff space X.

Of special interest are the prime z-ideals of C^*. When X is a locally
compact, σ-compact Hausdorff space, we show that the family of
prime z-ideals of $C^*(X)$ contained in M^* is composed of two sub-
families, order-isomorphic with naturally corresponding families of
prime z-ideals in the rings $C(X)$ and $C(\beta X - X)$.

1. Preliminaries. We shall use the terminology and notation of the
Gillman-Jerison text [3]. Applying [3, Theorem 3.9], we immediately
reduce the problem of the prime ideal structure of $C^*(X)$, and its
relation to $C(X)$, to the case that X is a completely regular Hausdorff
space. A basic property of prime ideals in rings of functions that will
be used several times is a theorem of Kohls ([9, Theorem 2.4], see
also [3, 14.8(a), 6.6(c)]: In the ring $C(X)$, and also in $C^*(X)$, the
prime ideals containing a given prime ideal form a chain.

The proof of the main theorem is based on Kohls’ result and the
following theorem ([10, 4.4]; cf. [7, 3.1] and [6, p. 112]): A prime
z-filter Q on a space T is minimal if and only if for every zero-set Z in Q
there is a zero-set W not in Q such that $Z \cup W = T$.

We shall use \mathfrak{M}_p and \mathfrak{O}_p to denote the z-filters $Z[M_p]$ and $Z[O_p]$, respectively.

2. The main theorem. Under the reduction made in §1 to the case
of a completely regular Hausdorff space X, a maximal ideal of $C^*(X)$
corresponds to a point p of βX and is denoted M^*_p, and the maximal
ideal M_p of $C(X)$ that corresponds to p is the unique maximal ideal

Received by the editors July 28, 1967.

1432
of \(C(X) \) such that \(M^p \cap C^* \subseteq M^p \) (see [3, Chapter 7]). Thus the main theorem takes the following form.

Theorem I. Let \(p \in \beta X \). Every prime ideal \(P \) of \(C^*(X) \) contained in \(M^p \) is comparable with \(M^p \cap C^* \). Specifically, \(P \subseteq M^p \cap C^* \) if and only if \(P \) contains no unit of \(C \), while \(M^p \cap C^* \subseteq P \) if and only if \(P \) contains a unit of \(C \).

Proof. Let \(P \) be any prime ideal of \(C^*(X) \) with \(P \subseteq M^p \). Choose a minimal prime ideal \(Q \) with \(Q \subseteq P \). To prove that \(P \) and \(M^p \cap C^* \) are comparable, it suffices to show that \(Q \subseteq M^p \cap C^* \), for then \(P \) and \(M^p \cap C^* \) both contain the prime ideal \(Q \).

To show that \(Q \subseteq M^p \cap C^* \), we first pass to the ring \(C(\beta X) \) by means of the canonical isomorphism \(f \mapsto f^\beta \) of \(C^*(X) \) onto \(C(\beta X) \) [3, 6.6(b)], and then we pass to the family of prime \(z \)-filters on \(\beta X \) [3, 2.12]. According to the Gelfand-Kolmogoroff theorem [3, 7.3], the prime ideal in \(C(\beta X) \) corresponding to \(M^p \cap C^* \) is given by

\[
(M^p \cap C^*)^\beta = \{ g \in C(\beta X) : \ p \in \text{cl}_{\beta X} Z_X(g \mid X) \}.
\]

Since \(Z_X(g \mid X) = Z_{\beta X}(g) \cap X \), this is a \(z \)-ideal in \(C(\beta X) \). We denote the corresponding prime \(z \)-filter on \(\beta X \) by \(\mathfrak{F}^p \); thus

\[
\mathfrak{F}^p = \{ Z \in Z(\beta X) : \ p \in \text{cl}_{\beta X}(Z \cap X) \}.
\]

Also, the minimal prime ideal \(Q^\beta \) of \(C(\beta X) \) corresponding to \(Q \) is a \(z \)-ideal [3, 14.7]; we denote the corresponding minimal prime \(z \)-filter on \(\beta X \) by \(Q \). Let \(Z \in Q \) and let \(V \) be any zero-set-neighborhood of \(p \) in \(\beta X \). Since \(Q \subseteq \mathfrak{F}^p \) and \(V \subseteq \text{cl}_{\beta X} \), we have \(V \subseteq Q \) [3, 7.15] and thus \(V \cap Z \in \mathfrak{F}^p \). Using the minimality of \(Q \), we choose a zero-set \(W \) not in \(Q \) such that \((V \cap Z) \cup W = \beta X \). If \(V \cap Z \) has empty interior in \(\beta X \), then \(W \) is dense in \(\beta X \); so \(W = \beta X \) and \(W \subseteq Q \), contradicting the choice of \(W \). Hence \(V \cap Z \) has nonempty interior in \(\beta X \), and thus \((V \cap Z) \cap X \neq \emptyset \). This shows that every neighborhood of \(p \) in \(\beta X \) meets \(Z \cap X \); hence \(p \in \text{cl}_{\beta X}(Z \cap X) \) and \(Z \in \mathfrak{F}^p \). Thus \(Q \subseteq \mathfrak{F}^p \) and it follows that \(Q \subseteq M^p \cap C^* \).

Now assume that \(P \) contains no unit of \(C \). Let \(f \in P \) and let \(V \) be any zero-set-neighborhood of \(p \) in \(\beta X \). Since \(Z[P^\beta] \) is a prime \(z \)-filter on \(\beta X \) contained in \(\mathfrak{F}^p \), we have \(V \subseteq Z[P^\beta] \), so that \(V \cap Z(f^\beta) \subseteq Z[P^\beta] \) and thus also \(V \cap Z(f) \subseteq Z[P] \). Since \(P \) contains no unit of \(C \), \(V \cap Z(f) \neq \emptyset \). Hence \(p \in \text{cl}_{\beta X} Z(f) \), i.e., \(f \in M^p \). Thus \(P \subseteq M^p \cap C^* \). The converse is immediate, and the last statement then follows from the comparability.

Remarks. The second part of the theorem generalizes [3, 7.9]: \(M^{*p} = M^p \cap C^* \) if and only if \(M^{*p} \) contains no unit of \(C \).
We also note that a nonunit of C in $M^p \cap C^*$ need not be contained in $M^p \cap C^*$. For example, choose any function g in $C^*(\mathbb{R})$ that vanishes at infinity and has nonempty compact zero-set. Then g is a nonunit of C and for any $p \in \beta \mathbb{R} - \mathbb{R}$, we have $g \in M^p$ but $g \notin M^p \cap C^*$. Whenever $f^\beta(p) = 0$, $Z(f) \neq \emptyset$, but $p \notin \text{cl}_X Z(f)$, Theorem I shows that although $f \in M^p$ and f is a nonunit of C, $M^p \cap C^*$ contains no prime ideal that contains f and contains only nonunits of C.

3. z-ideals in C^*. As in C, a z-ideal in C^* is an ideal I that contains any function that belongs to the same maximal ideals as some function in I (see [8, p. 30] and [3, 2.7, 4A.5]). Thus the z-ideals of $C^*(X)$ are the ideals that correspond to z-ideals of $C(\beta X)$ under the isomorphism $f \to f^\beta$, and the family of all prime z-ideals of $C^*(X)$ is order-isomorphic with the family of all prime z-filters on βX [3, 2.12].

Every minimal prime ideal in C is a z-ideal [3, 14.7]. Thus a prime ideal in C is minimal if it contains no prime z-ideals. Also, if the prime z-ideals contained in a given maximal ideal of C form a chain, then all the prime ideals contained in that maximal ideal form a chain. By [3, 6.6(c)], prime ideals in C^* also have these properties.

4. The isomorphism theorem. In the case that $\beta X - X$ is a zero-set in βX (equivalently, that X is locally compact and σ-compact), the prime z-ideal structure of $C^*(X)$ may be described entirely in terms of prime z-ideals in the rings $C(X)$ and $C(\beta X - X)$. Some of the known results on the structure of these rings will be applied in §§6 and 7 to obtain information on the structure of $C^*(X)$.

When X is locally compact and σ-compact, there is a bounded unit of C that belongs to $M^p \cap C^*$ for every $p \in \beta X - X$; thus $M^p \cap C^* \neq M^p$ if and only if $p \notin X$.

Theorem II. Let X be locally compact and σ-compact, and let $p \in \beta X$.

(a) The family of prime z-ideals of $C^*(X)$ contained in $M^p \cap C^*$ is order-isomorphic with the family of prime z-ideals of $C(X)$ contained in M^p.

(b) The family of prime z-ideals of $C^*(X)$ properly containing $M^p \cap C^*$ (when $p \notin X$) is order-isomorphic with the family of prime z-ideals of $C(\beta X - X)$ contained in $M^p_{\beta X - X}$.

Proof. We first place the prime z-ideals contained in $M^p \cap C^*$ in order-preserving correspondence with the prime z-filters on βX contained in $\mathfrak{m}^p_{\beta X}$, by means of the mapping $P \to Z[P^\beta]$. Under this mapping, we have $M^p \cap C^* \to \mathfrak{m}^p$ (see §2). The order-isomorphisms will now be obtained by means of traces and induced z-filters [10, §5].

(a) If \varnothing is a prime z-filter contained in \mathfrak{m}^p, then every member of
Φ meets X. By [10, Theorem 5.2], the trace
\[Φ|X = \{ Z \cap X : Z ∈ Φ \} \]
of Φ on X is a prime z-filter on X. Since Φ ⊆ ℳ, we have Φ|X ⊆ ℳ. If Q is any prime z-filter on X contained in ℳ, the induced prime z-filter
\[Q^* = \{ Z ∈ Z(βX) : Z \cap X ∈ Q \} \]
is clearly contained in ℳ, and Q^*|X = Q. Hence the mapping Φ → Φ|X, for Φ ⊆ ℳ, is onto the family of prime z-filters on X contained in ℳ. For any Φ ⊆ ℳ, it is immediate that Φ ⊆ (Φ|X)^. Now let Z ∈ (Φ|X)^; thus there is W ∈ Φ such that Z ∩ X = W ∩ X. Since W ⊆ Z ∪ (βX – X), we have Z ∪ (βX – X) ∈ Φ. But βX – X ∈ Φ, so Z ∈ Φ. Hence Φ = (Φ|X)^ and it follows that the mapping is one-to-one.

(b) If Φ is a prime z-filter on βX properly containing ℳ, then by [10, Theorem 5.2], the trace (Φ| (βX – X)) is a prime z-filter on βX – X. Since Φ ⊆ ℳ, we have Φ| (βX – X) ⊆ ℳ. If Q is any prime z-filter on βX – X contained in ℳ, the induced z-filter
\[Q^* = \{ Z ∈ Z(βX) : Z \cap (βX – X) ∈ Q \} \]
is prime and Q^*| (βX – X) = Q. Since Q ⊆ ℳ, we have Q^* ⊆ ℳ. Furthermore, the zero-set (βX – X) is in Q^* but clearly not in ℳ; hence Q^* ⊆ ℳ. It now follows from Theorem I that Q^* properly contains ℳ. Thus the mapping Φ → Φ| (βX – X), for ℳ ⊆ Φ, is onto the family of prime z-filters on βX – X contained in ℳ. It is clear that Φ ⊆ (Φ| (βX – X))^*. Now let Z ∈ (Φ| (βX – X))^*; thus there is W ∈ Φ such that Z ∩ (βX – X) = W ∩ (βX – X). By Theorem I the z-ideal corresponding to Φ contains a unit of C, and thus βX – X ∈ Φ. It follows that Z ∈ Φ. Hence Φ = (Φ| (βX – X))^* and the mapping is one-to-one.

5. An application to F-spaces. An immediate consequence of Theorem II is a well-known theorem on F-spaces [2, 2.7], (see also [3, 14.27] and [11, 3.3]). A space T is an F-space if every finitely generated ideal in C(T) is principal, or, equivalently, if the prime ideals contained in any given maximal ideal form a chain [3, 14.25]. In part (b) of Theorem II, the prime z-ideals properly containing the prime ideal M^p ∩ C^* form a chain; thus we have

Corollary 1 (Gillman-Henriksen). If X is locally compact and σ-compact, then βX – X is a compact F-space.
6. Immediate successors. It was shown in [4, p. 432] that if X is locally compact and σ-compact, and $p \in \beta X - X$, then \mathcal{V} has an immediate successor $(\mathcal{V})^+$ in the family of prime z-filters on βX, generated by \mathcal{V} and the zero-set $\beta X - X$, i.e.

$$(\mathcal{V})^+ = (\mathcal{V}, \beta X - X).$$

(This result may also be obtained from Theorem I, which shows that a prime z-filter contained in $\mathcal{M}_{\beta X}$ properly contains \mathcal{V} if and only if it contains the zero-set $\beta X - X$.)

Furthermore, it is shown in [4, p. 433] that in the case of the countably infinite discrete space \mathbb{N},

$$i_{01} = (\mathcal{O}_{\beta \mathbb{N}}, \beta \mathbb{N} - \mathbb{N}).$$

We now generalize this as follows.

Corollary 2. Let X be locally compact and σ-compact, and let $p \in \beta X - X$. Then

$$(\mathcal{V})^+ = (\mathcal{O}_{\beta x}, \beta X - X).$$

Hence the immediate successor of $(\mathcal{V})^+ C^*$ in the family of prime z-ideals of $C^*(X)$ consists of all functions f such that f^p vanishes on a neighborhood of p in $\beta X - X$.

Proof. According to the construction of the second isomorphism in \S4, we have $(\mathcal{V})^+ = (\mathcal{O}_{\beta x-x}^p)^+$, and it is easily verified that

$$(\mathcal{O}_{\beta x}, \beta X - X) = (\mathcal{O}_{\beta x-x}^p)^.$$

Remark. The present paper began with the observation that although $\mathcal{O}_{\beta \mathbb{R}}$ is usually not prime (see [10, Theorem 11.2]), the z-filter $(\mathcal{O}_{\beta \mathbb{R}}, \beta \mathbb{R} - \mathbb{R})$ is always prime, because of the above representation as an induced z-filter and the Gillman-Henriksen theorem of \S5. This raised the question of its relation to \mathcal{V} and $(\mathcal{V}, \beta \mathbb{R} - \mathbb{R})$.

7. Remote points and P-points. For any space X, a point p in βX is called a remote point in βX if every member of \mathcal{M}_X has non-empty interior (see [1]). When X is a metric space, remote generalizes isolated: a point p in X itself is a remote point in βX if and only if it is an isolated point of X. Also, if D is a discrete space, every point in βD is a remote point in βD. When X is a metric space with no isolated points, a point p in βX is a remote point in βX if and only if p is in the closure of no discrete subset of X (see [5, \S23, VIII]).
Under the continuum hypothesis, the existence of remote points in \(\beta\mathbb{R} \) was shown in [1]. It is shown in Theorem 11.2 of [10] (the proof given there for the real line is also valid for the case considered here) that if \(X \) is a separable metric space and \(p \in \beta X \), the following are equivalent: (a) The prime ideals contained in \(M_p^\mathbb{X} \) form a chain. (b) \(M_p^\mathbb{X} \) is a minimal prime ideal. (c) \(p \) is a remote point in \(\beta X \).

A point \(p \) of a space \(T \) is a \(P \)-point of \(T \) if every zero-set containing \(p \) is a neighborhood of \(p \) [3, 4L]; equivalently, if \(M_p^\beta \) is a minimal prime ideal [3, 14.12]. Under the continuum hypothesis, there exist \(P \)-points of \(\beta X - X \) whenever \(X \) is locally compact but not pseudo-compact [3, 9M].

Assuming the continuum hypothesis, Donald Plank [12, Theorem 6.2] has recently discovered points in \(\beta\mathbb{R} - \mathbb{R} \) that are both remote points in \(\beta\mathbb{R} \) and \(P \)-points of \(\beta\mathbb{R} - \mathbb{R} \), points that are remote points but not \(P \)-points, points that are \(P \)-points but not remote points, and also points that are neither. He has also shown that each of these four classes of points is a dense subset of \(\beta\mathbb{R} - \mathbb{R} \) of cardinal 2\(^c\). These points provide examples for the various types of prime ideal structure of \(C^* \) described below.

Applying Theorems I and II, and Theorem 11.2 of [10] (as stated above), we obtain the following relations between points in \(\beta X \) and the prime ideal structure of \(C^*(X) \). (Corollary 4 generalizes [4, Theorem 3.10], which gives the result for the case \(X = \mathbb{N} \).)

Corollary 3. Let \(X \) be a locally compact, \(\sigma \)-compact metric space, and let \(p \in \beta X \). Then the following conditions are equivalent.

(a) The prime ideals of \(C^* \) contained in \(M_p^\mathbb{X} \) form a chain.

(b) \(M_p^\mathbb{X} \cap C^* \) is a minimal prime ideal of \(C^* \).

(c) \(p \) is a remote point in \(\beta X \).

Corollary 4. Let \(X \) be locally compact and \(\sigma \)-compact, and let \(p \in \beta X - X \). Then \(M_p^\mathbb{X} \) is the immediate successor of \(M_p^\mathbb{X} \cap C^* \) in the family of prime \(z \)-ideals of \(C^*(X) \) if and only if \(p \) is a \(P \)-point of \(\beta X - X \).

Corollary 5. Let \(X \) be a locally compact, \(\sigma \)-compact metric space, and let \(p \in \beta X - X \). Then the family of prime \(z \)-ideals of \(C^* \) contained in \(M_p^\mathbb{X} \) consists of just the two ideals \(M_p^\mathbb{X} \) and \(M_p^\mathbb{X} \cap C^* \) if and only if \(p \) is both a remote point in \(\beta X \) and a \(P \)-point of \(\beta X - X \).

References

University of Kansas