NONINJECTIVE CYCLIC MODULES

B. L. OSOFSKY

In [3], it is shown that a ring R such that every cyclic right R-module is injective must be semisimple Artin. In this note, that proof is greatly simplified, and it is shown that a hereditary ring cannot contain an infinite direct product of subrings.

R will denote a ring with 1, all modules will be unital right R-modules, and all homomorphisms R-homomorphisms. For a module M, $E(M)$ will denote its injective hull (see [2]).

Theorem. Let $\{e_i| i \in I\}$ be an infinite set of orthogonal idempotents of R. Assume for each $A \subseteq I$, there exists $m_A \in R$ such that $m_A e_i = e_i$ for all $i \in A$, and $e_i m_A = 0$ for all $j \in I - A$. Then for all $M_R \supseteq R$, $M/(\sum_{i \in I} e_i R + \ker \pi)$ is not injective, where $\pi: R \rightarrow \prod_{i \in I} e_i R$, $\pi(m) = (e_i m)$.

Proof. Let $I = \bigcup_{A \in \mathcal{A}} A$, where \mathcal{A} is infinite and for all $A, B \in \mathcal{A}$, A is infinite and $A \cap B \neq \emptyset \Rightarrow A = B$. By Zorn's lemma, \mathcal{A} can be enlarged to a set $\mathcal{B} \subseteq$ the power set of σ maximal with respect to the properties

(i) for all $A \in \mathcal{B}$, A is infinite, and
(ii) for all A and B in \mathcal{B}, $A \neq B \Rightarrow A \cap B$ is finite.

Let $\Sigma = \sum_{i \in I} e_i R + \ker \pi$. Then Σ is precisely the set of elements of R annihilated by almost all e_i. Let $A \in \mathcal{B}$, $r \in R$, and assume $m_A r \in \Sigma$. Then there exist an infinite number of i (all in A) such that $e_i m_A r \neq 0$. For any set $\{A_j| 1 \leq j \leq n\} \subseteq \mathcal{B} - \{A\}$, $A \cap \bigcup_{j=1}^n A_j$ is finite. Thus for all but a finite number of $i \in A$, $e_i m_A = 0$ for all j, $1 \leq j \leq n$. Then $m_A r \in \Sigma$, so $\sum_{A \in \mathcal{B}} (m_A + \Sigma) R$ is direct in M/Σ.

Define $\phi: \Sigma A \in \mathcal{B}, \Sigma A R + \Sigma \rightarrow M/\Sigma$ by

$$
\phi(m_A) = m_A \quad A \in \mathcal{A},
$$

$$
= 0 \quad A \in \mathcal{B} - \mathcal{A}.
$$

Assume ϕ extends to a homomorphism $\tilde{\phi}$ from $R/\Sigma \rightarrow M/\Sigma$. Let $\tilde{\phi}(1 + \Sigma) = m + \Sigma$. Then for all $A \in \mathcal{A}$, $mm_A = m_A + \sum_{i=1}^n e_i r_i + k$, so $A' = \{a \in A| e_a m e_a = e_a\} \supset A - \{i | 1 \leq l \leq n\}$ is infinite.

Let C be a choice set for $\{A'| A \in \mathcal{A}\}$. By the maximality of \mathcal{B}, $C \cap D$ is infinite for some $D \in \mathcal{B}$, and D cannot belong to \mathcal{A}. But then

Received by the editors July 10, 1967.

1 The author gratefully acknowledges partial support from the National Science Foundation under grant GP 7162.

1383
mm_D \subseteq \Sigma$, so for all but a finite number of $i \in \mathcal{I}$, $e_i mm_D = 0$. Hence for all but a finite number of $d \in C \cap D$, $0 = e_d mm_D$, but for all $d \in C \cap D$, $e_d = e_d mm_D e_d$, a contradiction.

Corollary. Let R contain an infinite ring direct product $\prod_{i \in \mathcal{I}} R_i$, where R_i is a ring with identity e_i. Then R is not hereditary.

Proof. By [1, p. 14], a ring R is hereditary if and only if every quotient of an injective module is injective. \{e_i \mid i \in \mathcal{I}\} are orthogonal idempotents, and the characteristic function of A will serve as m_A in the theorem. Then $E(R) / \Sigma$ is not injective.

Corollary. Let R be a ring such that every cyclic R-module is injective. Then R is semisimple Artin.

Proof. R is von Neumann regular and self injective. For any set of orthogonal idempotents $\{e_i \mid i \in \mathcal{I}\} \subseteq R$ and $A \subseteq \mathcal{I}$, let m_A be the projection of 1 on $E(\sum_{i \in A} e_i R) \subseteq R$. Clearly $m_A e_i = e_i$ for all $i \in A$. Let $j \in \mathcal{I} - A$. Then $Re_j m_A = Re$ for some $e = e^2$. If $x = m_A e r \in \sum_{i \in A} e_i R$, then $e_j x = 0$ so $e_j m_A e r = 0$, $e_r = 0$, and finally $x = 0$. Since $m_A R$ is an essential extension of $\sum_{i \in A} e_i R$, $m_A e R = 0$. Then $e_j m_A = e_j m_A e = 0$. The theorem then shows that \mathcal{I} cannot be infinite, so R is semisimple Artin (see [4]).

References

The Institute for Advanced Study and Rutgers, The State University