1. Introduction and results. In [2] and [3], K. Nagami and the
author introduced functions d_2 and d_3 from the class of all (X, ρ) into
the nonnegative integers, where X is a nonnull metrizable topological
space and ρ is a metric for X, consistent with the topology of X.
Formal definitions are given in [3], and are condensed as follows.

Definition. $d_2(X, \rho)$ is the smallest integer n such that for every
set of $n + 1$ pairs $C_1, C'_1; C_2, C'_2; \cdots; C_{n+1}, C'_{n+1}$ of closed subsets of X
with $\rho(C_i, C'_i) > 0$ for $i = 1, 2, \ldots, n + 1$ there exist closed sets
$B_1, B_2, \ldots, B_{n+1}$ such that (i) B_i separates X between C_i and C'_i
and (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$.

Definition. $d_3(X, \rho)$ is the smallest integer n such that given any
positive integer m and m pairs $C_1, C'_1; C_2, C'_2; \cdots; C_m, C'_m$ of closed
subsets of X with $\rho(C_i, C'_i) > 0$ for $i = 1, 2, \ldots, m$ then there exist
closed sets B_1, B_2, \ldots, B_m such that (i) B_i separates X between C_i
and C'_i and (ii) no $n + 1$ of the sets B_1, B_2, \ldots, B_m have a point in
common (order $\{B_i: i = 1, 2, \ldots, m\} \leq n$).

We also consider metric dimension of (X, ρ), denoted $\mu \dim(X, \rho)$,
and defined as the smallest integer n such that for all $\epsilon > 0$ the set of
all ϵ-balls has a refining cover of order $n + 1$ or less.

The following results are in [3]:
(i) for all (X, ρ), $d_2(X, \rho) \leq d_3(X, \rho) \leq \mu \dim(X, \rho) \leq \dim X$,
(ii) for totally bounded (X, ρ), $d_3(X, \rho) = \mu \dim(X, \rho)$, and
(iii) for all $n > 2$ there exists a space (X_n, ρ) with $d_2(X_n, \rho) < d_3(X_n, \rho)$
$\leq \mu \dim(X_n, \rho) < \dim X = n$.

No example is known having d_3 strictly less than $\mu \dim$.

The main result of the present paper is stated in Theorem 1. Using
this theorem we can prove Theorem 2, which extends to the function
d_3 (provided X is separable) a result proved in [4] for the
function $\mu \dim$.

Theorem 1. Let (X, ρ) be a separable metric space. Then there exists
a homeomorphism h of X into a subset of I^ω (the Hilbert cube) such that,
letting σ denote the I^ω metric
(i) $d_2(X, \rho) = d_2(h(X), \sigma)$ and
(ii) $d_3(X, \rho) = d_3(h(X), \sigma)$.
Thus for any separable (X, ρ) there is a topologically equivalent totally
bounded metric σ which preserves d_2 and d_3.

Received by the editors July 31, 1967.

1 This research was supported in part by the National Science Foundation Grant
GP-5919.
Theorem 2. For a separable metric space \((X, \rho) \), suppose \(d_3(X, \rho) = r \), \(\dim X = n \), and \(r < n \). Then for every integer \(k \) \((r \leq k \leq n) \) there exists a metric \(\rho_k \) for \(X \) such that

(i) \(\rho_k \) is topologically equivalent to \(\rho \), and
(ii) \(d_3(X, \rho_k) = k \).

Unsolved Problem. In the statement of Theorem 2, replace \(d_3 \) by \(d_2 \). Is the resulting statement true?

2. Proof of Theorem 1. Define \(r \) and \(s \) as follows: \(d_3(X, \rho) = r \), \(d_3(X, \rho) = s \). Then since \(d_2(X, \rho) \geq r \) there exist \(2r \) closed sets \(C_1, C'_1 \); \(C_2, C'_2 \); \ldots; \(C_r, C'_r \) such that (i) \(\rho(C_i, C'_i) > 0 \) for \(1 \leq i \leq r \) and (ii) if for each \(i \) the closed set \(B_i \) separates \(X \) between \(C_i \) and \(C'_i \) then \(\cap_{i=r} B_i \neq \emptyset \). Similarly, since \(d_3(X, \rho) \geq s \), there is an integer \(m \) and \(2m \) closed sets \(C_{r+1}, C'_{r+1} \); \ldots; \(C_{r+m}, C'_{r+m} \), such that (i) \(\rho(C_i, C'_i) > 0 \) and (ii) if for each \(i \) \((r \leq i \leq r+m) \), the closed set \(B_i \) separates \(X \) between \(C_i \) and \(C'_i \) then \(\left\{ B_i : r+1 \leq i \leq r+m \right\} \geq s \).

For each positive integer \(i \) we define a function \(f_i : X \rightarrow \mathbb{I}^n \), and define \(h : X \rightarrow I^\omega \) by the formula

\[
 h(x) = (f_1(x), f_2(x), \ldots) \in I^\omega.
\]

Let \(\{\rho_i : i \geq r+m\} \) be a countable dense subset of \(X \) and make the following definitions:

\[
 f_i(x) = \frac{\rho(x, C_i)}{i(\rho(x, C_i) + \rho(x, C'_i))} \quad (i \leq r + m);
\]

\[
 f_i(x) = \frac{\rho(x, \rho_i)}{i(1 + \rho(x, \rho_i))} \quad (i > r + m).
\]

Letting \(\sigma \) be the usual metric in \(I^\omega \) we have, for \(x, y \in X \),

\[
 \sigma(h(x), h(y)) = \left(\sum_{i=1}^{\infty} (f_i(x) - f_i(y))^2 \right)^{1/2}.
\]

Note that for

\[
 x \in C_i, \quad y \in C'_i, \quad f_i(y) - f_i(x) = f_i(y) = 1/i
\]

so that

\[
 \sigma(h(C_i), h(C'_i)) > 0.
\]

2.1. Lemma. Let \(\delta > 0 \) be the smaller of 1 and the minimum \(\rho(C_i, C'_i)/4 \) for \(1 \leq i \leq r + m \). Let \(\epsilon \) be given such that \(0 < \epsilon < \delta \), and let \(\eta = \epsilon \delta / 2 \). Then if \(x, y \in X \) and \(\rho(x, y) < \eta \) it follows that \(|f_i(x) - f_i(y)| < \epsilon / 2i \) for all \(i \), and \(\sigma(h(x), h(y)) < \epsilon \).
Proof. Fix x and y such that $\rho(x, y) < \eta$. Fix $i \leq r+m$. To simplify notation, introduce A, B, α, and β by the definitions

$$\rho(x, C_i) = A, \quad \rho(x, C'_i) = B, \quad \rho(y, C_i) = A + \alpha, \quad \rho(y, C'_i) = B + \beta.$$

Then

$$|\alpha| < \eta, \quad |\beta| < \eta, \quad A + B + \alpha + \beta > 4\delta - 2\eta > 2\delta,$$

and (see (2))

$$i \left| f_i(x) - f_i(y) \right| = \left\| \frac{A}{A + B} - \frac{A + \alpha}{A + B + \alpha + \beta} \right\| \leq \frac{A}{A + B} \frac{|\beta|}{2\delta} + \frac{B}{A + B} \frac{|\alpha|}{2\delta} < \frac{\epsilon \delta}{2\delta} = \frac{\epsilon}{2}.$$

Thus for $i \leq r+m$ we have $|f_i(x) - f_i(y)| < \epsilon/2i$. If $i > r+m$, from (3) it is trivial that $i |f_i(x) - f_i(y)| \leq \rho(x, y) < \epsilon/2$. Thus for all i, $|f_i(x) - f_i(y)| < \epsilon/2i$, and, using the fact that $\sum_{i=1}^{n} 1/i^2 = \pi^2/6 < 4$, we have $\sigma(h(x), h(y)) < \epsilon$, from (4). This completes the proof of the lemma.

2.2. A sufficient condition that $h : X \to h(X)$ be a homeomorphism is that for $x \in X$, $M \subset X$, (i) if $\rho(x, M) = 0$ then $\sigma(h(x), h(M)) = 0$, and (ii) if $\rho(x, M) > 0$ then $\sigma(h(x), h(M)) > 0$. Statement (i) follows trivially from Lemma 2.1. To prove (ii) suppose $\rho(x, M) = d > 0$, and fix $i (i > r+m)$ so that $\rho(x, p_i) < d/4$. Then for all $y \in M$ we have $\rho(y, p_i) > 3d/4$, and

$$f_i(y) - f_i(x) > \frac{3d/4}{i(1 + 3d/4)} - \frac{d/4}{i(1 + d/4)} = \epsilon > 0,$$

with ϵ independent of y.

Thus

$$\sigma(h(x), h(M)) \geq \inf \{(f_i(y) - f_i(x)) : y \in M\} \geq \epsilon.$$

2.3. Assertion. If C, C' are disjoint closed subsets of X and $\rho(C, C') = 0$, then $\sigma(h(C), h(C')) = 0$.

Proof. Let δ, ϵ, and η be given as in the hypothesis of Lemma 2.1. Fix $x \in C$, $y \in C'$ so that $\rho(x, y) < \eta$. Then $\sigma(h(C), h(C')) \leq \sigma(h(x), h(y)) \leq \epsilon$, by Lemma 2.1. Thus $\sigma(h(C), h(C')) = 0$.

2.4. Conclusion of Proof of Theorem 1. In view of 2.3, it is evident from definitions that $d_2(h(X), \sigma) \leq r$ and $d_3(h(X), \sigma) \leq s$, because in $(h(X), \sigma)$ there is no "new" pair C, C' at positive distance. On the other hand, the $r+m$ pairs $C_1, C'_1; \ldots; C_{r+m}, C'_{r+m}$, which
guarantee that \(d_2(X, \rho) \geq r, \ d_3(X, \rho) \geq s \) remain at positive distance in \((h(X), \sigma) \) so \(d_2(h(X), \sigma) \geq r, \ d_3(h(X), \sigma) \geq s. \)

3. Proof of Theorem 2. We are given a separable metric space \((X, \rho)\) with \(d_3(X, \rho) = r < n = \dim X \). From Theorem 1 there is a topologically equivalent metric \(\sigma \) for \(X \) such that (i) \(d_3(X, \sigma) = d_3(X, \rho) \) and (ii) \((X, \sigma)\) is totally bounded. Thus [3, Theorem 5] \(d_3(X, \sigma) = \mu \dim(X, \sigma) = r \). Now in [4], in the proof of the main theorem, a finite number of continuous functions \(f_1, f_2, \cdots, f_t \) are defined, \(f_i: X \to [0, 1] \), and metrics \(\sigma_1, \sigma_2, \cdots, \sigma_t \) for \(X \) are defined by the formula

\[
\sigma_i(x, y) = \sigma_{i-1}(x, y) + |f_i(x) - f_i(y)|,
\]

where \(\sigma_0 = \sigma \). These have the property that \(\mu \dim(X, \sigma_i) \leq \mu \dim(X, \sigma_{i+1}) \leq \mu \dim(X, \sigma_i) + 1 \), and \(\mu \dim(X, \sigma_i) = n \). Thus for any \(k \ (r < k \leq n) \) there exists \(i(k) \) such that \(\mu \dim(X, \sigma_{i(k)}) = k \). But in the present case, with \((X, \sigma_0)\) totally bounded, every \((X, \sigma_i)\) is totally bounded (see Hurewicz [1, p. 200]) so by [3] we have \(d_3(X, \sigma_{i(k)}) = k \), and the proof is complete.

References

Duke University