A MOTZKIN-TYPE THEOREM FOR CLOSED NONCONVEX SETS

L. CALABI AND W. E. HARTNETT

Introduction. Bouligand [1] recognized the importance of the nearest-points mapping for a closed set X and the set S_X of points with more than one nearest point in X for the study of geometry. Later Motzkin [3], [4] used them in the proof of his theorem characterizing closed convex sets. We use them to show, essentially, that S_X characterizes the complement of X in its convex hull. Our result includes the Motzkin theorem as a special case and yields a theorem of Valentine [5] as a corollary. The original motivation and background for our work can be found in [2].

The statement of the theorem. To every closed set A of the Euclidean n-dimensional space E we associate its closed convex hull $C(A)$ and its convex deficiency $D = D(A) = C(A) \setminus A$. We denote by π the nearest-points mapping A and by r the distance from A:

$$r(x) = d(x, A), \quad \pi(x) = \{y: y \in A, d(x, y) = r(x)\},$$

where d denotes the Euclidean distance.

We let $B(x)$ denote the closed ball around x of radius $r(x)$ and $B^0(x)$ denote its interior. Observe that $B^0(x) \cap A = \emptyset$ and $B(x) \cap A = \pi x$. We shall say that $x \in A$ is a skeletal point of A iff $B(x)$ is contained in no other $B(x')$. The set of all skeletal points of A is the skeleton of A and is denoted by S. The skeletal pair of A is (S, q), where q is the restriction of r to S. Clearly S contains all points having more than one nearest point in A; in fact, as already shown by Motzkin [3], such points form a dense subset of S.

Our main result may now be stated.

Theorem. Two closed subsets of E have the same convex deficiency if and only if they have the same skeletal pair.

The proof of the theorem follows.

D determines (S, q). If $x, y \in E$ and $x \neq y$, we let $[x, y]$ denote the segment with endpoints x and y and set $[x, y] = [x, y] \setminus \{y\}$ and $(x, y] = [x, y] \setminus \{x\}$. We let $[y, x)$ denote the closed ray with endpoint
and set \((y, x) = [y, x]\setminus\{y\}\). For \(y \in A\), \(\pi(y) = \{x: x \in E, y \in \pi x\}\). For each set \(X\) we put \(X^* = \{x: x \in E, d(x, C(X)) = d(x, y)\) with \(y \in X\}\). Notice that \(X = C(X) \cap X^*\).

Lemma 1. If \(D\) is the convex deficiency of \(A\), we have:

(a) \(D^*\) is the complement of \(A^*\).

(b) \(A^* = A \cup \{x: x \in E, \text{ if } y \neq x \text{ and } y \in \pi x, \text{ then } \pi x = \{y\}\) and \([y, x] \subset \pi^{-1}(y)\}\).

(c) \(D^* = \{x: x \in A, \text{ if } y \in \pi x, \text{ then } \pi^{-1}(y) \cap [y, x] = [y, z]\) for some \(z\}\).

Proof. Observe that \(x \in A^*\) iff \(d(x, C(A)) = d(x, A)\). Hence, because \(d(x, C(A)) \leq d(x, A), A^* = E \setminus D^*\) iff \(d(x, C(A)) < d(x, A)\) for each \(x \in D^*\).

If \(d(x, C(A)) < d(x, A)\), then \(d(x, C(A)) = d(x, y)\) for some \(y \in D\). Thus \(d(x, y) \leq d(x, C(A)) \leq d(x, C(D)) \leq d(x, y)\), since also \(y \in C(D)\). Consequently \(x \in D^*\).

Conversely, to prove that \(x \in D^*\) implies \(d(x, C(A)) < d(x, A)\), we prove that \(x \in D^*\) implies \(d(x, C(D)) = d(x, C(A)) = d(x, y)\) for some \(y \in D\). If \(x \in D\), that statement is trivial. Assume then \(x \in D^* \setminus D\), and hence also \(x \in C(D)\). Then, for some \(y \in D\), \(d(x, C(D)) = d(x, y)\). Let \(H_y\) be the hyperplane of support for \(C(D)\) at \(y\) orthogonal to \([y, z]\) and let \(E_y\) be the closed half space bounded by \(H_y\) and containing \(C(D)\). If \(y' \in A \setminus E_y\), then \([y, y'] \subset C(A)\) and, since \(D \subset E_y\), \(y, y' \subset A\). But \(A\) is closed, and hence \(y \in A\), contradicting the fact that \(y \in D\). Then \(A \subset E_y\), \(C(A) \subset E_y\) and \(d(x, C(D)) = d(x, C(A)) = d(x, y)\) with \(y \in D\). If \(d(x, C(A)) = d(x, y) = d(x, A)\), then \(y \in A\) because \(A\) is closed. Hence \(d(x, C(A)) < d(x, A)\) and \((a)\) is established.

To prove \((b)\) it is enough to show that \(A^*\) contains the second set at the right of the equal sign so we pick \(x\) in the set. Then the hyperplane orthogonal to \([y, x]\) passing through \(y\) is a hyperplane of support for \(A\) and hence for \(C(A)\). Thus \(y \in C(A)\) and \(d(x, A) = d(x, C(A))\), that is \(x \in A^*\). Statement \((c)\) follows at once from \((a)\) and \((b)\).

We set \(F(D) = (\text{bd } D) \setminus D\) and observe that \(D = \emptyset\) iff \(D^* = \emptyset\) iff \(F(D) = \emptyset\).

Lemma 2. If \(A\) has convex deficiency \(D\), then for \(x \in D^*\) we have \(r(x) = d(x, F(D))\).

Proof. Suppose \(y \in \pi x\). If \(x \in D \subset C(A)\), then \((y, x) \subset D, y \in D\), and hence \(y \in F(D)\). If \(x \in D^* \setminus D\), let \(y' = \pi x\) be the projection of \(x\) into \(C(D) \subset C(A)\). Then \([y, y'] \subset C(A)\), \((y, y') \subset C(A) \setminus A = D, y \in D\), and so \(y \in F(D)\).

If \((S, g)\) is the skeletal pair of \(A\), we let \(P(A) = \{\{(y, x): y \in \pi x, x \in S\}\}. We then have the following result:
Lemma 3. Suppose that A has convex deficiency D and skeletal pair (S, q). Then $S \subseteq P(A) = D^\star$.

Proof. The inclusion is trivial. The equality follows from Lemma 1(c) and the observation that $x \in S$ iff $x \in A$ and $\pi^-(y) \cap [y, x] = [y, x]$ for $y \in \pi x$.

The proof of the next lemma is immediate.

Lemma 4. The skeleton S of A is the set of those points $x \in D^\star$ for which

\[r(x') + d(x, x') = r(x) \quad \text{if} \ x' \in [y, x], \]

\[r(x) + d(x, x') > r(x') \quad \text{if} \ x' \in [y, x] \setminus [y, x] \]

for every $y \in \pi x$.

We can now establish the first half of the theorem. Let A, A' be two closed sets with equal convex deficiency D. Then $P(A) = P(A')$ by Lemma 3, and $r(x) = r'(x)$ for each $x \in P(A)$ by Lemma 2. Lemma 4 yields $S = S'$ and consequently $q = q'$.

(S, q) determines D. For each set X we put $B^0(X) = \bigcup \{ B^0(x) : x \in X \}$ and $\pi X = \bigcup \{ \pi x : x \in X \}$. Notice that if $X \subseteq A^\circ = \emptyset$, then $B^0(X) \cap A = \emptyset$ and $\pi X \subseteq \text{bd} A$.

Lemma 5. Let A have convex deficiency D and skeletal pair (S, q). Then

(a) $\pi x = B(x) \setminus B^0(S) \subseteq F(D)$ for each $x \in D^\star$.

(b) $\text{Cl} \ \pi S = F(D)$.

Proof. First observe that $D \subseteq B^0(D^\star) \subseteq B^0(S)$. Because $\pi x \subseteq B(x) \setminus B^0(S)$, it is enough to show that $B(x) \setminus B^0(S) \subseteq A$. If $x' \subseteq (B(x) \setminus A) \cap C(A)$, then $x' \subseteq D \subseteq B^0(S)$. Hence $(B(x) \setminus B^0(S)) \cap C(A) \subseteq A$. If $x' \subseteq B(x) \setminus C(A)$, let $y \in \pi x$. Because $y \in C(A)$, $x' \in C(A)$, and $x \in A^\star$, there exists a point $y' \in (y, x') \cap \text{bd} C(A) \subseteq B^0(x)$. Let $y_0 \in \text{bd} C(A) \cap B^0(x)$ be such that $d(x, \text{bd} C^D) = d(x, y_0)$. Clearly, $y_0 \in D$ because $y_0 \in B^0(x)$. Let H_{y_0} be a hyperplane of support for $C(A)$ and hence for $C(D)$ at y_0. There exists $z \notin C(D)$ such that the open ray (y_0, z) orthogonal to H_{y_0} at y_0 lies in $D^\star \setminus D$. Since, for $z' \subseteq (y_0, z)$, $d(z', y_0) = d(z', C(D)) < d(z', A)$ it is easy to see that $x' \subseteq B^0(z')$ for some $z' \subseteq (y_0, z)$. But $B^0(z') \subseteq B^0(S)$ and hence $(B(x) \setminus B^0(S)) \cap C(A) = \emptyset$ and the equality $\pi x = B(x) \setminus B^0(S)$ is established. By Lemma 2, $\pi x \subseteq F(D)$ and (a) is proved.

From (a) we deduce $\text{Cl} \ \pi S \subseteq F(D)$, since the last set is closed. For the converse, if $y \in F(D)$, then $y \in \text{Cl} D$ and so there exists a sequence $\{ x_n \}$ with $x_n \in D$ and $\{ x_n \} \to y$. Let $y_n \in \pi x_n$; then $d(y, y_n) \leq d(y, x_n)$
+\delta(x_n, y_n). \text{ Since } \{x_n\} \to y, \ r(x_n) \to 0 \text{ and hence also } d(y, y_n) \to 0. \text{ By Lemma 3, } y_n \in \pi S \text{ and thus } y \in \overline{\pi S}.

Lemma 6. If \(D \) is the convex deficiency of \(A \), then \(D \subseteq C(F(D)) \) and \(C(D) = C(F(D)) \).

Proof. Suppose \(x \in D \) but \(x \notin C(F(D)) \). Project \(x \) onto \(z \in C(F(D)) \) and let \(H_z \) be the supporting hyperplane of \(C(F(D)) \) at \(z \) orthogonal to \([z, x]\) and let \(E_z \) be the corresponding closed half space containing \(C(F(D)) \). We claim that \(C(A) \subseteq E_z \). If not, then there exists some \(y \in A \setminus E_z \). Because \(x \in C(A) \), \([x, y]\) lies in \(C(A) \). Now \([x, y] \cap A\) is closed and nonempty and we let \(y' \) be the unique point of \([x, y] \cap A\) nearest \(x \). Then \([x, y'] \subseteq D\) and \(y' \in F(D) \), contradicting the inclusions \(F(D) \subseteq C(F(D)) \subseteq E_z \). Hence all points of \(A \) and of \(C(A) \) lie in \(E_z \), in particular, \(x \in D \subseteq C(A) \), contradicting our assumption. Hence \(D \subseteq C(F(D)) \). But then \(C(D) \subseteq C(F(D)) \subseteq C(\overline{D}) = C(D) \) and the second statement follows.

We can now terminate the proof of the theorem. Assume that \(A \) and \(A' \) have the same skeletal pair \((S, q)\). Then, by Lemma 5(a), \(\pi x = \pi' x \) for each \(x \in S \) and consequently \(P(A) = P(A') \). Thus by Lemmas 3 and 5(b), \(D^* = D'^* \), \(F(D) = F(D') \). But by Lemma 6 then \(C(D) = C(F(D)) = C(D') \) and \(D = C(D) \cap D^* = D' \).

References

Parke Mathematical Laboratories, Inc.