A NOTE ON THE AUTOMORPHISM GROUP
OF A p-GROUP

RALPH FAUDREE

The relation between the order of a p-group and its automorphism group has been the subject of several papers, see [1], [2], and [4]. The existence of outer-automorphisms of a finite p-group was proved by Gaschütz [3], but the question of the size of the automorphism group of a p-group still remains. In this paper we will prove that the order of the automorphism group of a finite nonabelian nilpotent class two group is divisible by the order of the group. It should be noted that the above result is stated in [4], but the proof is invalid; see [2].

In this paper G will denote a finite nonabelian nilpotent class two p-group. Z, G', Φ and $A(G)$ will denote the center, derived subgroup, Frattini subgroup and automorphism group of G. S will denote a set of elements $\{a, b, \ldots, f\} \subset G$ such that $G/G'=(a \cdot G') \times \cdots \times (f \cdot G')$. Let $k_a \geq k_b \geq \cdots \geq k_f$ and k'_a, \ldots, k'_f be the orders of a, b, \ldots, f modulo G' and Z respectively. If r is a rational number then $\lceil r \rceil = \max \{1, r\}$.

Lemmas on automorphisms. The following lemma can be found in [4]. The lemma as stated in [4] is incorrect and leads to the error of that paper, but the proof is correct for the lemma as stated below.

Lemma 1. If z in G commutes with a, b, c, e, \ldots, f, $(dz)^{k_d} = d^{k_d}$ and $G = Gp(a, b, \ldots, dz, \ldots, f)$ then the map sending $w a \cdots f$ into $w a^{r_a} \cdots (dz)^{r_d} \cdots f^{r_f}$ $(0 \leq r_a \leq k_a, w \in G')$ determines an automorphism of G'.

The following lemma is slightly more general than a lemma in [1], but the proof is the same so it is not included here.

Lemma 2. Suppose

(i) $G' = (u) \times U$ where $|u| = m_1 > m' \geq \exp U$,

(ii) $[g, h] = u$ and $h^{m_1, m''} = 1$,

(iii) $m'' = m'$ if p is odd and $m'' = \max \{2, m'\}$ if $p = 2$.

Let $H = Gp(g, h)$ and $L = \{x \in G \mid [g, x], [h, x] \in U\}$. Then $G = HL$ and the correspondence

Received by the editors August 6, 1967.

Supported by NSF Grant GP 7029.
defines an automorphism \(\sigma \) of \(G \) which leaves the elements of \(Z \) fixed. \(\sigma \) has order \(\frac{m_1}{m''} \) modulo the central automorphisms of \(G \).

The following is well known.

Lemma 3. The normal subgroup \(N \) of \(A(G) \) of all automorphisms leaving every coset of \(G \) with respect to \(\Phi \) fixed is a \(p \)-group.

Theorem. If \(G \) is a finite nonabelian nilpotent class two \(p \)-group, then the order of \(G \) divides the order of \(A(G) \).

Proof. We can assume that \([a, b] = w_1\), \(G' = (w_1) \times \cdots \times (w_n)\) where \(|w_i| = m_i\) \((1 \leq i \leq n)\) and \(m_1 \geq m_2 \geq \cdots \geq m_n\). Note that \(k_a \geq k_b \geq m_1\).

If \(m_1|k_d\), then the map sending \(g = w^{a_1} \cdots d^{r_1} \cdots f^{r_1} \) into \(w^{a_1} \cdots (d \cdot d^{m_1})^{r_1} \cdots f^{r_1} \) \((w \in G, t = 1, \cdots, k_d/m_1)\) is an automorphism of \(G \) leaving \(d \) invariant by Lemma 1. Also by Lemma 1 there is an automorphism sending \(w^{a_1} \cdots f^{r_1} \) into \(w^{a_1} \cdots (d \cdot w^{m_1})^{r_1} \cdots f^{r_1} \) where \(q_j = \left\lfloor m_j/k_d \right\rfloor \) and \(u = 1, \cdots, m_j/q_j \). There are \(\min\{k_d, m_j\} \) such automorphisms.

Let \(T \) be the subgroup of automorphisms of \(G \) generated by the above central automorphisms. Then

\[
|T| = \prod_{d \in \Phi} \left(\left\lfloor k_d/m_1 \right\rfloor \cdot \prod_{i=1}^n \min\{k_d, m_i\} \right) \geq k_a \cdots k_f \cdot m_2 \cdot m_3 \cdots m_n.
\]

It is therefore sufficient to exhibit a subgroup \(U \) of \(A(G) \) such that \(UT \) is a \(p \)-group and \(|UT: T| \geq m_1/m_2\).

We will define five automorphisms \(\sigma_1, \sigma_2, \tau_1, \tau_2 \) and \(\theta \) of \(G \), let \(U = Gp(\sigma_1, \sigma_2, \tau_1, \tau_2, \theta) \) and verify that \(U \) satisfies the above properties. Let \(H = Gp(T, \sigma_1, \sigma_2) \) and \(R = Gp(T, U) \). In every case \(R \) will be a subgroup of \(N \) or an extension of a subgroup of \(N \) by an element of order \(p \), so \(R \) will be a \(p \)-group by Lemma 3.

There is no loss of generality in assuming

\[
a^{k_a} = w_1^{t_a} \mod (w_2 \times \cdots \times w_n), \quad b^{k_b} = w_1^{t_b} \mod (w_2 \times \cdots \times w_n),
\]

and \(k_a = l k_b \) where \(t_a \) and \(t_b \) are powers of \(p \).

The map

\[
a \to b^{m_1} a,
\]

\[
d \to d, \quad \forall d \in S \setminus \{a\}
\]

determines a central automorphism \(\sigma_1 \) of \(G \) by Lemma 1 for \(m_1 \).
The smallest power of c_1 in T is k_b/m_1. Likewise the map
\[
\begin{align*}
 b &\rightarrow ba^{l_a}, \\
 d &\rightarrow d, \quad \forall d \in S \setminus \{b\}
\end{align*}
\]
determines a central automorphism c_2 of G if
\[
l_a = \max\{m_1, k_a m_1/k_b t_a, k_a m_2/k_b\}.
\]
The smallest power of c_2 in T is $\min\{k_a/m_1, k_b t_a/m_1, k_b/m_2\}$.

By Lemma 2 there is an automorphism τ_1 leaving b fixed which
has order
\[
\min\{[[m_1 t_b/k_b]], [[m_2/k_b m_2]] \text{ and possibly } m_1/2 \text{ if } p = 2\}
\]
modulo the central automorphisms of G. By the same lemma there is
an automorphism τ_2 of G leaving a fixed which has order
\[
\min\{[[m_1 t_a/k_a]], [[m_2/k_a m_2]], \text{ and possibly } m_1/2 \text{ if } p = 2\}
\]
modulo the central automorphisms of G.

The automorphism θ will be the identity for the most general cases
and will be defined differently for each exceptional case.

To make the orders of c_1, c_2, τ_1 and τ_2 as large as possible we want
to choose a and b such that t_a and t_b are maximal. Consider the following
three cases for the relationship between t_a and t_b
I. $t_b = rt_a$,
II. $t_a = rt_b$, $r \geq l$,
III. $t_a = rt_b$, $1 < r < l$.

In case I if you replace b by a^{-l_τ}, then $t_b = m_1$ unless $p = 2$, $k_a = k_b = m_1$, and $r = l = 1$; then $t_b = m_1/2$. In case II if you replace a by b^{-l_τ}, $t_a = m_1$ unless $p = 2$, $k_a = k_b = m_1$ and $r = l = 1$; then $t_b = m_1/2$. In case III if you replace b by ba^{-l_τ}, then $t_b = m_1/r$.

We will now consider all values of k_a, k_b, m_1, m_2 and p except when $p = 2$ and $k_a = k_b = m_1$, or $p = 2$, $k_a > m_1$, $k_b = m_1$ and $m_2 = 1$. In case I consideration of the orders of c_1 and τ_1, in case II consideration of the orders of c_2 and τ_2, and in case III consideration of the orders of c_2 and τ_1 modulo appropriate subgroups give $[R: T] \geq m_1/m_2$.

Now consider the case where $k_a = k_b = m_1$ and $p = 2$. Due to symmetry we must consider only case I. If $m_2 > 1$ then τ_1 has order m_1/m_2 modulo H and hence $[R: T] \geq m_1/m_2$. If $m_2 = 1$, $t_a \geq 2$, $m_1 > 2$ then consideration of the orders of τ_2 and τ_1 give that $[R: T] \geq m_1$. Assume $m_2 = 1$ and $t_a = 1$. There is no loss of generality in assuming $t_b = m_1/2$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Then using the construction given in Lemma 2 it can be shown that the map \(a \to ba \) and \(b \to b \) determines an automorphism \(\theta \) of order \(m_1 \) modulo \(T \), and thus \([R: T] \geq m_1\). If \(m_1 = 2 \) and \(a^2 = b^2 = w_1 \), the map \(a \to b \) and \(b \to a \) determines an automorphism \(\theta \) of \(G \). If \(m_1 = 2 \) and \(a^2 = w, \ b^2 = 1 \), the map \(a \to a, \ b \to ab \) determines an automorphism \(\theta \). In either case the above definition of \(\theta \) gives \([R: T] \geq m_1\).

Assume \(k_a > m_1, \ k_b = m_1 \) and \(m_2 = 1 \). In case II, consideration of the orders of \(\sigma_2 \) and \(\tau_2 \) give \([R: T] \geq m_1\) and in case III, consideration of the orders of \(\sigma_2 \) and \(\tau_1 \) give \([R: T] \geq m_1\). Case I can be handled just as in the previous paragraph.

References