On reconstructing a graph
HTML articles powered by AMS MathViewer
- by Robert L. Hemminger
- Proc. Amer. Math. Soc. 20 (1969), 185-187
- DOI: https://doi.org/10.1090/S0002-9939-1969-0232696-4
- PDF | Request permission
References
- Frank Harary and Ed Palmer, The reconstruction of a tree from its maximal subtrees, Canadian J. Math. 18 (1966), 803–810. MR 200190, DOI 10.4153/CJM-1966-079-8
- F. Harary, On the reconstruction of a graph from a collection of subgraphs, Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963) Publ. House Czech. Acad. Sci., Prague, 1964, pp. 47–52. MR 0175111
- Paul J. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957), 961–968. MR 87949
- Oystein Ore, Theory of graphs, American Mathematical Society Colloquium Publications, Vol. XXXVIII, American Mathematical Society, Providence, R.I., 1962. MR 0150753
- Hassler Whitney, Congruent Graphs and the Connectivity of Graphs, Amer. J. Math. 54 (1932), no. 1, 150–168. MR 1506881, DOI 10.2307/2371086
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 20 (1969), 185-187
- DOI: https://doi.org/10.1090/S0002-9939-1969-0232696-4
- MathSciNet review: 0232696