The operator equation $BX-XA=Q$ with self-adjoint $A$ and $B$
HTML articles powered by AMS MathViewer
- by Marvin Rosenblum PDF
- Proc. Amer. Math. Soc. 20 (1969), 115-120 Request permission
References
- Arlen Brown and Carl Pearcy, Multiplicative commutators of operators, Canadian J. Math. 18 (1966), 737–749. MR 200720, DOI 10.4153/CJM-1966-074-1
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368 B. A. Lengyel, On the spectral theorem of self-adjoint operators, Acta Sci. Math. (Szeged) 9 (1939), 174-186.
- Gunter Lumer and Marvin Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32–41. MR 104167, DOI 10.1090/S0002-9939-1959-0104167-0 B. B. Morrel, On two operator equations, M. A. Thesis, University of Virginia, Charlottesville, 1966.
- C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36, Springer-Verlag New York, Inc., New York, 1967. MR 0217618, DOI 10.1007/978-3-642-85938-0
- Marvin Rosenblum, On the operator equation $BX-XA=Q$, Duke Math. J. 23 (1956), 263–269. MR 79235
- William E. Roth, The equations $AX-YB=C$ and $AX-XB=C$ in matrices, Proc. Amer. Math. Soc. 3 (1952), 392–396. MR 47598, DOI 10.1090/S0002-9939-1952-0047598-3
Additional Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 20 (1969), 115-120
- DOI: https://doi.org/10.1090/S0002-9939-1969-0233214-7
- MathSciNet review: 0233214