An operator ergodic theorem for sequences of functions
HTML articles powered by AMS MathViewer
- by E. M. Klimko and Louis Sucheston PDF
- Proc. Amer. Math. Soc. 20 (1969), 272-276 Request permission
References
- David Blackwell and Lester E. Dubins, A converse to the dominated convergence theorem, Illinois J. Math. 7 (1963), 508–514. MR 151572
- Leo Breiman, The individual ergodic theorem of information theory, Ann. Math. Statist. 28 (1957), 809–811. MR 92710, DOI 10.1214/aoms/1177706899
- R. V. Chacon, Identification of the limit of operator averages, J. Math. Mech. 11 (1962), 961–968. MR 0145352
- R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153–160. MR 110954
- Alexandra Ionescu Tulcea, Contributions to information theory for abstract alphabets, Ark. Mat. 4 (1961), 235–247 (1961). MR 180404, DOI 10.1007/BF02592011
- E. M. Klimko and Louis Sucheston, On convergence of information in spaces with infinite invariant measure, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 10 (1968), 226–235. MR 239874, DOI 10.1007/BF00536276
- Philip T. Maker, The ergodic theorem for a sequence of functions, Duke Math. J. 6 (1940), 27–30. MR 2028
- Jacques Neveu, Mathematical foundations of the calculus of probability, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1965. Translated by Amiel Feinstein. MR 0198505
- Louis Sucheston, On the ergodic theorem for positive operators. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 1–11. MR 213510, DOI 10.1007/BF00533940
Additional Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 20 (1969), 272-276
- MSC: Primary 28.70
- DOI: https://doi.org/10.1090/S0002-9939-1969-0233956-3
- MathSciNet review: 0233956