1. Introduction. The generalized Hausdorff method denoted by
\(H^{(s)}(d) \) is defined in [4] to the effect that if
(1) \(s \) is a sequence of positive numbers,
(2) \(d_n = \int_{0}^{1} I^s dg, \ n = 0, 1, 2, \ldots \), and
(3) where \(n, \ p \) is a nonnegative integer pair,
\[
\begin{pmatrix} n \\ p \end{pmatrix}_s
\]
denotes 0 if \(n < p \), 1 if \(n = p \), and \(s_n \cdot s_{n-1} \cdots s_{p+1} / (n - p)! \) if \(n > p \), then
\[
H^{(s)}_{np} = \begin{pmatrix} n \\ p \end{pmatrix}_s \Delta^{n-p} d_p.
\]
If \(s_n = n \), \(n = 1, 2, 3, \ldots \), then \(H^{(s)} \) is denoted by \(H \) and \(H(d) \)
represents the Hausdorff method. Furthermore \(H^{(s)} \) is expressible
in terms of \(H \) by the formula \(H^{(s)}_{np} = \pi^{(p)}_n H_{np} \), where \(\pi^{(p)}_n = 1 \) and
\[
\pi^{(p)}_n = \prod_{k=1}^{p+1} \pi^{(p+1)}_{n+k} k, \ n > p.
\]
As in [4] \(s \) is restricted so that \(s_n \leq n, \ n = 1, 2, 3, \ldots \).

Let \(R \) denote the space of sequences \(d \) each of which is generated
by a function \(g \) which is Riemann-integrable on \([0, 1] \), and let \(B V \)
denote the subspace of \(R \) such that \(d \in B V \) if \(g \) is of bounded variation
on \([0, 1] \). \(H^{(s)}(d) \) means generated by sequences of the latter type
were considered in [4]. In this paper we are primarily interested in
moment sequences belonging to \(R \) but not to \(B V \). It is found that the
three conditions of Silverman and Toeplitz are reduced to two, and a
generalization is obtained of one of the fundamental theorems of
\(H(d) \)-summability. Conditions on \(s \) and \(g \) under which \(H^{(s)}(d) \) is
multiplicative are established and an example is indicated to show
that the restriction on \(g \) is not necessary.

2. Modification of the Silverman-Toeplitz conditions. If \(d \in R \setminus B V \),
the three conditions for convergence-preservation reduce to two in
the case of an \(H^{(s)}(d) \) mean, namely, that \(\| H^{(s)} \| \) exists and \(\{ \sum_{p=0}^{n} H^{(s)}_{np} \} \)
converges. Before establishing this we have, with \(c_0 \) denoting the
space of zero-limit sequences, the following property of the collection
of product sequences.

Presented to the Society, April 12, 1968; received by the editors March 6, 1967
and, in revised form, September 29, 1967.
Lemma 1. If there is a nonnegative integer P such that $\pi^{(P)} \subseteq c_0$, then for each nonnegative integer p, $\pi^{(p)} \subseteq c_0$.

Proof. If $p < P$ and $n \geq 1$, $\pi^{(p)}_n \leq \pi^{(P)}_n$. If $\epsilon > 0$ and $p > P$, then there is a positive integer N such that if $n > N$, $\pi^{(P)}_n < \epsilon \prod_{k=p+1}^n s_k/k$, so that $\pi^{(p)}_n = \pi^{(P)}_n / \prod_{k=p+1}^n s_k/k < \epsilon$.

We next show that if $d \in R \setminus BV$ and $H^{(\sigma)}(d)$ is conservative, then it is multiplicative.

Theorem 1. If $d \in R \setminus BV$ and there is a number K such that $\sum_{n=0}^\infty |H^{(\sigma)}_{np}| < K$, $n = 0, 1, 2, \ldots$, then $\lim_{n \to \infty} H^{(\sigma)}_{np} = 0$, $p = 0, 1, 2, \ldots$.

Proof. Since $d \notin BV$, the sequence $\{ \sum_{n=0}^\infty |H^{(\sigma)}_{np}| \}$ is unbounded. Suppose there is a nonnegative integer P such that $\pi^{(P)} \subseteq c_0$. From Lemma 1 if $p \geq 0$, there is a positive number t_p such that $\lim_{n \to \infty} \pi^{(P)} = t_p$. Furthermore $t_0 \leq t_p$ so that if $n \geq p$, $\pi^{(P)}_n \leq \pi^{(P)}_n \leq t_0$ and $\sum_{n=0}^\infty |H^{(\sigma)}_{np}| \leq t_0 \sum_{n=0}^\infty |H^{(\sigma)}_{np}|$. Therefore $\pi^{(P)} \subseteq c_0$ if $p \geq 0$, and since the set $\{ H^{(\sigma)}_{np} \}$ is bounded, $\lim_n H^{(\sigma)}_{np} = 0$.

It may be observed that if $d \in R \setminus BV$, then the existence of $\|H^{(\sigma)}\|$ is necessary and sufficient that $H^{(\sigma)}(d)$ be regular over the space c_0 [2, p. 49, Theorem 4].

There remains only the statement of conditions necessary and sufficient for convergence-preservation.

Theorem 2. If $d \in R \setminus BV$, then $H^{(\sigma)}(d)$ is multiplicative if and only if there exist numbers K and L such that

(i) $\sum_{n=0}^\infty |H^{(\sigma)}_{np}| < K$, $n = 0, 1, 2, \ldots$;
(ii) $\lim_{n \to \infty} \sum_{p=0}^n H^{(\sigma)}_{np} = L$.

3. A fundamental theorem. If $a_n = 1 - s_n/n$, $n = 1, 2, 3, \ldots$, it is apparent from the proof of Theorem 1 that if $d \in R \setminus BV$ and $H^{(\sigma)}(d)$ is conservative, then $\sum_n a_n$ is divergent. Hence in view of [4, Theorem 6] we may extend one of the fundamental theorems of Hausdorff summability.

Theorem 3. If $\sum_n a_n$ is convergent, then $H^{(\sigma)}(d)$ is conservative if and only if $d \in BV$.

4. Sufficient conditions for convergence-preservation. For each nonnegative integer pair n, p, $n \geq p$, let f_{np} denote the polynomial

$${n \choose p} P(1 - I)^{n-p}$$
and \(V_{[a,b]} f_{np} \) the variation of \(f_{np} \) on \([a, b]\). Then \(H_{np} = \int_{[0,1]} f_{np} dg \). We state some lemmas for convenience.

Lemma 2. If \(n, p \) is a positive integer pair, \(n > p \), then

1. \(f_{np} \) is increasing on \([0, p/n]\) and decreasing on \([p/n, 1]\);
2. \(V_{[0,1]} f_{np} = 2f_{np}(p/n) \);
3. \(V_{[0,1]} f_{n,n-p} = V_{[0,1]} f_{np} \);
4. \(\lim_n V_{[0,1]} f_{np} = 2p^pe^{-p}/p! \).

Lemma 3. \(\lim_p p^pe^{-p}/p! = 0 \).

Lemma 4. If \(d \in \mathbb{R} \) and \(\epsilon > 0 \), there is a positive integer pair \(N, P \) such that if \(n > N \) and \(P \leq p \leq n - P \), then \(|H_{np}| < \epsilon \).

Lemma 5. If \(0 < t < 1 \) and \(p \) is a positive integer, then \(\lim_n V_{[0,t]} f_{n,n-p} = 0 \).

Lemma 2 may be established by computing \(f_{np}' \) and noting that the high point of \(f_{np} \) is at \(p/n \), and Lemma 3 follows from an application of Stirling's formula. Lemma 5 is readily obtained from Lemma 2. Since the author is not aware of the existence in the literature of a proof of Lemma 4, an argument therefor is given after the theorem.

Theorem 4. If \(d \in \mathbb{R} \setminus BV \) and there is a number \(M \) such that \(\sum_{n=0}^{n} |p_n| < M \), then \(H^{(e)}(d) \) is regular over \(c_0 \). Furthermore if \(g(1-) \exists \), \(H^{(e)}(d) \) is multiplicative, and if \(g(1) - g(1-) = 2 \), \(H^{(e)}(d) \) is regular.

Proof. If \(W \) is a number such that \(|H_{np}| < W \), \(n \geq p \), \(p = 0, 1, 2, \ldots \), then \(\sum_{n=0}^{n} |H_{np}^{(e)}| = \sum_{n=0}^{n} p_n |H_{np}| < MW \), and \(H^{(e)}(d) \) is regular over \(c_0 \).

If \(\epsilon > 0 \), from Lemma 4 there is a positive integer pair \(N_1, P \) such that if \(n > N_1 \), \(\sum_{n=0}^{n-P} |H_{np}^{(e)}| = \sum_{n=0}^{n-P} p_n |H_{np}| < \epsilon/3 \).

From Theorem 1 there is a positive integer \(N_2 \), \(N_2 \geq N_1 \), such that if \(n > N_2 \), then \(\sum_{n=0}^{n-P} |H_{np}^{(e)}| < \epsilon/3 \).

From Lemma 2(iv) there is a number \(V \) such that if \(0 < p < P \) and \(n > P \), then \(V_{[0,1]} f_{np} < V \). Hence by Lemma 2(iii), if \(n-P < n-p < n \), then \(V_{[0,1]} f_{n,n-p} < V \). If \(\epsilon > 0 \), there is a positive number \(t \) such that if \(t < \epsilon < 1 \), then \(|g(x) - g(1-)| < \epsilon/9PV \). Let \(U \) denote an upper bound on \([0, 1]\) for \(|g|\). From Lemma 5 there is a positive integer \(N \), \(N \geq N_2 \), such that if \(n > N \) and \(0 < p < P \), then \(V_{[0,n]} f_{n,n-p} < \epsilon/18PU \). Since from Lemma 2(i) \(f_{n,n-p} \) is decreasing on \([(n-p)/n, 1]\), for each \(n \) there is a number \(z_n, t < z_n < 1 \), such that \(V_{[z_n,1]} f_{n,n-p} < \epsilon/18PU \). Thus if \(n > N \),
\[|H_{n,n-p}^{(n)}| \leq \left| \int_{[0,1]} f_{n,n-p} dg \right| \leq \left| \int_{[0,1]} [g - g(1-)] df_{n,n-p} \right| \]

\[+ \left| \int_{[t,n]} [g - g(1-)] df_{n,n-p} \right| + \left| \int_{[t,n]} [g - g(1-)] df_{n,n-p} \right| \]

\[< 2UV_{[0,t]} f_{n,n-p} + (e/9PV) V_{[t,n]} f_{n,n-p} + 2UV_{[t,n]} f_{n,n-p} < \epsilon/3P. \]

Therefore if \(n > N \), then \(\sum_{n=1}^{\infty} |H_{np}^{(n)}| < \epsilon \), and it is well known (e.g., see [3]) that \(\lim d = [g(1) - g(1-)]/2. \)

An example of a function \(g \) showing that the existence of \(g(1-) \) is not necessary for convergence-preservation may be constructed by defining \(g(x) = h(x) \), where \(h \) is defined in [1, p. 119, Theorem 3] and observing that \(B_{d}(x) = B_{d}(1-x) \), \(0 \leq x \leq 1. \)

5. Proof of Lemma 4. For the convenience of the reader the lemma is restated.

Lemma 4. If \(d \in R \) and \(\epsilon > 0 \), there is a positive integer pair \(N, P \) such that if \(n > N \) and \(P \leq p \leq n - P \), then \(|H_{np}| < \epsilon. \)

Proof. If \(\epsilon > 0 \), then from Lemmas 2(iv) and 3 there is a positive integer pair \(N_p, P \) such that if \(n > N_p \), then \(V_{[0,1]} f_{n,p} < \epsilon/U \), where \(|g| < c \) on \([0,1]\).

We next show that if \(n, p \) is a positive integer pair, \(p \leq n/2 \), and \(P \leq q \leq n - p \), then \(V_{[0,1]} f_{nq} \leq V_{[0,1]} f_{np} \). If \(p = n/2 \), then \(q = p \). If \(n = 3 \), then \(q = p \) or \(q = n - p \), and the conclusion follows from Lemma 2(iii). Suppose there is a least positive integer, denoted by \(k + 1 \), such that if \(p < (k + 1)/2 \), then there is a positive integer \(q \) such that \(p \leq q \leq k + 1 - p \) and \(V_{[0,1]} f_{k+1,p} > V_{[0,1]} f_{k+1,p} \). From Lemma 2(iii) \(q < k + 1 - p \). Furthermore if \(p \leq q \leq k - p \), \(V_{[0,1]} f_{kq} \leq V_{[0,1]} f_{kp} \). Since the sequence \(\{(1+1/n)^n\} \) is increasing, \((k/[k+1])^m \leq (1+1/\gamma) \leq V_{[0,1]} f_{kq} \leq (k/[k+1])^m \leq V_{[0,1]} f_{kp} \), whence using Lemma 2(ii), \(V_{[0,1]} f_{k+1,p} \leq V_{[0,1]} f_{k+1,p} \).

Thus if \(N = N_p + 2P \) and \(n > N \), then \(\left| \int_{[0,1]} f_{n,p} dg \right| = \left| \int_{[0,1]} g df_{n,p} \right| < \epsilon. \)

References