A DIFFERENTIAL IN THE ADAMS SPECTRAL SEQUENCE

DANIEL S. KAHN

It has been known for some time that the cohomology of the mod 2 Steenrod algebra A admits squaring operations. (For example, see [4].) Since the cohomology of A occurs as the E_2 term of the mod 2 Adams spectral sequence $\{E_r(S^0)\}$ [1], it is natural to ask if these squaring operations are in any way related to the structure of the spectral sequence. In §3 we shall prove a theorem which evaluates the differential d_2 on $\alpha \cup_1 \alpha$ if α is a permanent cycle.

1. We let A denote the mod 2 Steenrod algebra and $B(A)$ the standard bar resolution [2, p. 32]. We let $\Delta: B(A) \to B(A) \otimes B(A)$ denote the diagonal map [2, p. 32] and ρ the switching map $B(A) \otimes B(A) \to B(A) \otimes B(A)$.

Δ and $\rho \Delta$ are chain homotopic. Any chain homotopy $S: \Delta \simeq \rho \Delta$ can be used to define a product \cup_1 in $\text{Hom}_A(B(A), Z_2)$. By standard methods [4, p. 24] the \cup_1 product defines for any element $\alpha \in H^{*+r}(A)$ an element $\alpha \cup_1 \alpha \in H^{*+r}(A)$. Any two chain homotopies $S_1, S_2: \rho \Delta \simeq \Delta$ will give the same value for $\alpha \cup_1 \alpha$ and in particular will agree with value obtained by using the specific chain homotopy χ given on p. 36 of [2].

2. In dealing with the Adams spectral sequence, we shall use the formulation given in [1] with such additional comments as we make here. We shall use freely the definitions and notations of [1] in the remainder of this paper.

Our first observation is that a modification of the techniques of Lemma 1 on p. 46 of [3] can be used to give the following version of [1, Lemma 3.4]:

Lemma (2.1). Using the notations of [1, p. 189], we assume we are given a map of left A-complexes $\phi: D \to C$ covering $f^*: H^*(Z) \to H^*(X)$. Then there exists a map $g: Y_0 \to W_0$ equivalent to Sf with $g(Y_s) \subseteq W_s$ (for $s \leq k$) and such that $g^*: H^*(W_n, W_{n+1}) \to H^*(Y_s, W_{s+1})$ realizes ϕ.

Note. In (2.1) and elsewhere we omit explicit mention of the dimension of skeletons to which the conclusions of (2.1) apply. For any given argument here, one may choose n, k and l “large enough.”

Received by the editors September 8, 1967.

1 Research supported by National Science Foundation Grant GP 5591.
In the following lemma we let C be an acyclic resolution of $H^*(S^0)$ by free A-modules and $Y_0 \supset Y_1 \supset \cdots \supset Y_k$ a realization of C with Y_0 having the same homotopy type as S^n.

Lemma (2.2). Let $\gamma \in \pi_{n+q}(Y_m)$, $m+1 < k$, and denote by $\widetilde{\gamma}$ its image in $E^{e,m+q}_2(S^0)$. Then there exists an element $\xi \in \pi_{n+q}(Y_{m+1})$ whose image in $\pi_{n+q}(Y_m)$ is 2γ and whose image in $E^{e+1,m+1+q}_2(S^0)$ is $h_0\widetilde{\gamma}$.

Proof. Let $f: S^{n+q} \to Y_m$ represent γ. Let $X_0 \supset X_1 \supset X_2 \supset \cdots \supset X_{k-m}$ be a realization for C with X_0 having the same homotopy type as $S^{n+q} = S^{n+q}(S^0)$. Then by [1, Lemma 3.4] there exists a map $g: X_0 \to Y_m$ equivalent with f as a map into Y_m and such that $g(X_i) \subseteq Y_{m+i}$, $i \leq k-m$.

Now (2.2) is clearly true for γ a generator of $\pi^S_0(S^0)$, that is, there exists $u: S^{n+q} \to X_1$ such that the image of its homotopy class in $E^{1,1}_2(S^0)$ is h_0. Then the composite $gu: S^{n+q} \to Y_{m+1}$ induces the Yoneda product representation of $h_0\widetilde{\gamma}$. The homotopy class of gu is the required element ξ.

3. We are now ready to prove the following result:

Theorem. Let $\alpha \in H^{s+1}(A) \otimes H^{s+1}(S^0)$ be a permanent cycle in the Adams spectral sequence. Then

(i) $d_2(\alpha \cup \alpha) = h_0\alpha^2$ if p is odd, and

(ii) $\alpha \cup \alpha$ is a permanent cycle if p is even.

Remark. Part (i) could be viewed as a generalization of Theorem 1.1 of [1]. (Recall that $h_n \cup_1 h_n = h_{n+1}.$) Part (ii) is probably related to the fact that, for $\alpha \in \pi^S_2(S^0)$ and $\bar{\alpha}$ of order 2, the stable Toda bracket $\langle \bar{\alpha}, 2, \bar{\alpha} \rangle$ is divisible by 2 [7, p. 33] and the heuristic argument that $\alpha \cup_1 \alpha$ is half the Massey product $\langle \alpha, 2, \alpha \rangle$ [2, p. 47]—"heuristic" because we are working mod 2. A clarification of this is likely to require analysis along the lines of Moss' theorem, which, among other things, discusses the relation of Massey products in $H^*(A)$ to Toda brackets in $\pi^S_*(S^0)$ [6].

Proof. Suppose n is even and large relative to p and s. Let $X_0 \supset X_1 \supset \cdots \supset X_{k-b}$, $k > s+1$, be a realization for $B(A)$ with X_0 having the homotopy type of S^n. Set

$$Y_s = \bigcup_{a+b=c} X_a \wedge X_b, \quad (K \wedge L = K \times L/K \vee L).$$

Then Y_s is a realization of $B(A) \otimes B(A)$ with Y_0 having the homotopy type of $S^{2n} = S^n \wedge S^n$. Let $\tau: X_0 \wedge X_0 = Y_0 \to Y_0$ be the switching map. Then τ is a realization of $\rho: B(A) \otimes B(A) \to B(A) \otimes B(A)$.

A DIFFERENTIAL IN THE ADAMS SPECTRAL SEQUENCE 189
Let $W_0 \supset W_1 \supset \cdots \supset W_m$, $m \geq 2k$, be a realization of $B(A)$ with W_0 having the homotopy type of S^{2n}. By (2.1), there exists a map $\mu: Y_0 \to W_0$ realizing Δ. Also, since n is even, μ_\ast is a realization of ρ_Δ.

By Lemma 3.5 of [1], there exists a homotopy $h: I \times Y \to W_0$ such that $h_0 = \mu_\ast$, $h_1 = \mu$ and $h(I \times Y_i) \subset W_{i-1}$. We may assume that the base point $y \in \bigcap_i Y_i$ and that h preserves base point. Now

$$h^*: H^*(W_{i-1}, W_i) \to H^*(I \times Y_i, I \times Y_i \cup I \times U_{i+1})$$

defines a chain homotopy $S: \Delta \simeq \rho_\Delta$.

Since α is a permanent cycle, we may choose a map $u: S^{n+p} \to X_s$ to represent α. Denote by \bar{u} its homotopy class in $\pi_{n+p}(X_s)$. It follows that the composite

$$\partial(\eta^{2p+2n+1}S^{2p+2n})$$

\[\to (I, I) \times (S^{n+p} \wedge S^{n+p}, \ast) \xrightarrow{1 \times (u \wedge u)} (I, I) \times (X_s \wedge X_s, y) \]

\[\to (W_{2s-1}, W_{2s})\]

represents $\alpha \cup_\ast \alpha$.

By [4, Lemma 22.3], $\partial_s \theta \in \pi_{2p+2n}(W_{2n})$ is 0 if p is even, proving part (ii); $\partial_s \theta = 2[\mu \circ (u \wedge u)]$ if p is odd. Since $\mu \circ (u \wedge u)$ represents α^2, it follows by Lemma (2.2) that there exists a map $f: S^{2p+2n} \to W_{2s+1}$ such that f represents $h_\ast \alpha^2$ and $f \sim \theta$ S^{2p+2n} in W_{2s}. By using a specific homotopy, one may construct an element $\bar{\theta} \in \pi_{2p+2n+1}(W_{2s-1}, W_{2s+1})$ such that $\partial_s \bar{\theta} = [f]$ and such that the image of $\bar{\theta}$ in $\pi_{2p+2n+1}(W_{2s-1}, W_{2s})$ is θ. This completes the proof.

Bibliography

Northwestern University