Structure of hereditarily infinite dimensional spaces
HTML articles powered by AMS MathViewer
- by J. M. Yohe PDF
- Proc. Amer. Math. Soc. 20 (1969), 179-184 Request permission
References
- R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200–216. MR 205212, DOI 10.1090/S0002-9947-1967-0205212-3
- R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267–273. MR 43452, DOI 10.1090/S0002-9947-1951-0043452-5 —, A hereditarily infinite dimensional space, General Topology and its Relations to Modern Analysis and Algebra II, Proceedings of the Second Prague Topological Symposium, 1966. A. van Heemert, The existence of $1$- and $F$-dimensional subspaces of a compact metric space, Nederl. Akad. Wetensch. Indag. Math. 8 (1946), 564-569. (This paper is incorrect.) D. W. Henderson, An infinite dimensional compactum with no positive-dimensional compact subsets, Multilithed, Institute for Advanced Study, Princeton, N. J., 1965.
- David W. Henderson, An infinite-dimensional compactum with no positive-dimensional compact subsets—a simpler construction, Amer. J. Math. 89 (1967), 105–121. MR 210072, DOI 10.2307/2373100 M. S. Mazurkiewicz, Problem 57, Fund. Math. 20 (1933), 285.
- L. A. Tumarkin, On strongly and weakly infinite-dimensional spaces, Vestnik Moskov. Univ. Ser. I Mat. Meh. 1963 (1963), no. 5, 24–27 (Russian, with English summary). MR 0155295
- L. A. Tumarkin, On Cantorian manifolds of an infinite number of dimensions, Dokl. Akad. Nauk SSSR (N.S.) 115 (1957), 244–246 (Russian). MR 0091454
Additional Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 20 (1969), 179-184
- MSC: Primary 54.70
- DOI: https://doi.org/10.1090/S0002-9939-1969-0236896-9
- MathSciNet review: 0236896