On the local existence of solutions of certain functional-differential equations
HTML articles powered by AMS MathViewer
- by Robert J. Oberg
- Proc. Amer. Math. Soc. 20 (1969), 295-302
- DOI: https://doi.org/10.1090/S0002-9939-1969-0234094-6
- PDF | Request permission
References
- David R. Anderson, An existence theorem for a solution of $f^{\prime } (x)=F(x,\,f(g(x)))$, SIAM Rev. 8 (1966), 359–362. MR 203118, DOI 10.1137/1008070
- Rodney D. Driver, Existence theory for a delay-differential system, Contributions to Differential Equations 1 (1963), 317–336. MR 150421
- L. È. Èl′sgol′c, Introduction to the theory of differential equations with deviating arguments, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1966. Translated from the Russian by Robert J. McLaughlin. MR 0192154 W. R. Utz, The equation $f’(x) = af(g(x))$, Bull. Amer. Math. Soc. 71 (1965), 138.
- Shafik Doss and Saad K. Nasr, On the functional equation $dy/dx=f(x,y(x),y(x+h)),\;h>0$, Amer. J. Math. 75 (1953), 713–716. MR 58116, DOI 10.2307/2372546
- William Benjamin Fite, Properties of the solutions of certain functional-differential equations, Trans. Amer. Math. Soc. 22 (1921), no. 3, 311–319. MR 1501176, DOI 10.1090/S0002-9947-1921-1501176-X
- V. P. Skripnik, Systems with transformed argument. Boundary-value problems and the Cauchy problem, Mat. Sb. (N.S.) 62 (104) (1963), 385–396 (Russian). MR 0164111
- V. P. Skripnik, Systems with transformed argument in the case where the transformed argument depends on its solutions, Mat. Sb. (N.S.) 68 (110) (1965), 274–281 (Russian). MR 0199459
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 20 (1969), 295-302
- MSC: Primary 34.75
- DOI: https://doi.org/10.1090/S0002-9939-1969-0234094-6
- MathSciNet review: 0234094