1. Introduction. In this paper we give a lower bound to the first nonzero eigenvalue p_2 of the Stekloff problem [8] for plane regions having two axes of symmetry. Such bounds lead to a priori inequalities which are useful in giving error bounds for approximate solutions to the Neumann problem for Poisson's equation (see [5, §2]).

In [9], Weinstock has given an isoperimetric upper bound for p_2, but good lower bounds, which are more useful, are more elusive (see [1], [4], [6]).

We first prove a nodal-line theorem of some interest in itself. This nodal-line theorem does not seem to appear anywhere in the literature, although its proof is a straightforward application of familiar methods (see [7]). The results of the nodal-line theorem then permit us to use the method of defect (see, e.g., [2]) to obtain our bound by integrating an easily obtained one-dimensional version of the desired inequality.

2. Preliminaries. Let B be a bounded, connected domain of the x_1, x_2-plane with piecewise smooth boundary ∂B. We consider the Stekloff eigenvalue problem

\[(1) \quad \Delta u = 0 \text{ in } B, \quad \frac{\partial u}{\partial n} = pu \text{ on } \partial B, \]

where Δ is the Laplacian and n the unit outer normal on ∂B. The problem has a discrete spectrum of eigenvalues $0 = p_1 < p_2 \leq p_3 \leq \cdots$ with corresponding eigenfunctions $u_1 = \text{constant}, \ u_2, \ u_3, \ \cdots$. The eigenvalues can be characterized by

\[(2) \quad p_n = \min \frac{\int_B |\nabla v|^2 dx}{\int_{\partial B} v^2 ds}, \]

where the minimum is taken over all continuous and piecewise continuously differentiable functions v satisfying

\[(3) \quad \int_{\partial B} vu_k ds = 0, \quad k = 1, 2, \cdots, n - 1. \]
The minimum of (2) is attained when and only when \(v \) is an eigenfunction of (1) associated with \(p_n \).

3. The nodal-line theorem. A curve in \(B \) along which an eigenfunction \(u_n \) vanishes is called a nodal line of \(u_n \). What we prove is

Theorem. The nodal lines of \(u_n \) divide \(B \) into no more than \(n \) subdomains, and no nodal line is a closed curve.

Proof. We prove the second part of the theorem first. If a nodal line were closed, we would have \(u_n \equiv 0 \) in the interior of the curve since \(\Delta u_n = 0 \) in \(B \). But then \(u_n \) would vanish identically in \(B \) by the Unique Continuation Theorem for harmonic functions (see, e.g., [3, Chapter X, §5]). Thus no nodal line can be a closed curve.

Now suppose that the nodal lines of \(u_n \) divide \(B \) into more than \(n \) subdomains. Let \(D_1, D_2, \ldots, D_n \) be \(n \) of these subdomains. Note that \(\partial B \cap \partial D_i \) is not empty. Define \(w_i \) to agree with \(u_n \) on \(D_i \) and vanish on \(B - D_i \), \(i = 1, 2, \ldots, n \). Notice that \(w_i \equiv 0 \) on \(\partial B \cap \partial D_i \), otherwise \(w_i \equiv 0 \) in \(D_i \) (since \(\Delta w_i = 0 \) in \(D_i \)). Thus, we can find a linear combination, say \(v = \sum_{i=1}^{n} a_i w_i \), such that

\[
\oint_{\partial B} v^2 ds = 1
\]

and \(v \) satisfies (3). Moreover, the \(w_i \), hence \(v \), are continuous and piecewise continuously differentiable (see [3, Chapter X, §9]). Since \(\partial v / \partial n = p_n v \) on \(\partial B \), it follows from Green's first identity that

\[
\frac{\int_{\partial B} \text{grad } v \cdot 2dx}{\oint_{\partial B} v^2 ds} = p_n.
\]

Thus \(v \) minimizes (2) and is therefore an eigenfunction of (1). Hence \(v \) is harmonic and vanishes on the nonempty subdomain \(B - D_1 \cup \cdots \cup D_n \). Using the Unique Continuation Theorem we arrive at a contradiction. This completes the theorem.

The application we wish to make of this theorem is the following. Since an eigenfunction \(u_2 \) associated with \(p_2 \) satisfies \(\int_{\partial B} u_2 ds = 0 \), we see that \(u_2 \) must have a nodal line. By the theorem \(u_2 \) cannot have more than one, hence has exactly one.

4. The method of defect. Suppose now our region \(B \) has two distinct axes of symmetry. They may be assumed perpendicular, and, with no loss of generality, we take them to be the \(x_1 \) and \(x_2 \) axes. We will call a function defined on \(B \) even-even, odd-odd, even-odd, or odd-even as \(u \) is respectively even in both \(x_1 \) and \(x_2 \), odd in both \(x_1 \)
and \(x_2 \), even in \(x_1 \) and odd in \(x_2 \), or odd in \(x_1 \) and even in \(x_2 \). Every eigenfunction of (1) can be assumed to belong to one of these symmetry classes. From the previous section, \(u_2 \) must be in the even-odd or odd-even symmetry classes. (Otherwise, \(u_2 \) has an even number of nodal lines.) Hence, the nodal line is an axis of symmetry.

The one-dimensional inequality

\[
[u(0)]^2 + [u(l)]^2 \leq \frac{l}{2} \int_0^l [u'(y)]^2 dy,
\]

for continuous and piecewise continuously differentiable functions on the interval \((0, l)\) which satisfy \(u(0) = -u(l) \), is easily shown by solving the Euler equation.

Let us first consider the case when the eigenfunction \(u_2 \) is odd across the \(x_1 \)-axis. Suppose the boundary \(\partial B \) can be expressed by \(x_2 = f_1(x_1), \quad -a_1 \leq x_1 \leq a_1 \). Then, employing (4),

\[
\oint_{\partial B} u_2^2 \, ds = 2 \int_{-a_1}^{a_1} [u_2(x_1, f_1(x_1))]^2 (1 + [f'_1(x_1)]^2)^{1/2} \, dx_1
\]

\[
\leq \int_{-a_1}^{a_1} (1 + [f'_1(x_1)]^2)^{1/2} \left[f_1(x_1) \int_{-f_1(x_1)}^{f_1(x_1)} \frac{\partial u_2(x_1, x_2)}{\partial x_2} \right]^2 \, dx_1
\]

\[
\leq \left[\max_{-a_1 \leq x_1 \leq a_1} f_1(x_1) (1 + [f'_1(x_1)]^2)^{1/2} \right] \left[\int_{-a_1}^{a_1} \int_{-f_1(x_1)}^{f_1(x_1)} \left(\frac{\partial u_2}{\partial x_2} \right)^2 \, dx_2 \, dx_1 \right]
\]

\[
\leq \left[\max_{-a_1 \leq x_1 \leq a_1} f_1(x_1)(1 + [f'_1(x_1)]^2)^{1/2} \right] \int_B |\text{grad } u_2|^2 \, dx.
\]

By similarly treating the case when \(u_2 \) is odd across the \(x_2 \)-axis, we have our inequality:

\[
(p_2^{-1}) \leq \max_{i=1, 2} \left[\max_{-a_i \leq x_i \leq a_i} f_i(x_i)(1 + [f'_i(x_i)]^2)^{1/2} \right],
\]

where \(x_i = \pm f_i(x_2) \), \(-a_2 \leq x_2 \leq a_2 \), is another representation of \(\partial B \).

5. Some examples. We give a few examples of the application of (5) to particular regions. For an upper bound, we use the isoperimetric inequality of Weinstock [9], which says

\[
p_2 \leq 2\pi/L,
\]

where \(L \) is the length of \(\partial B \).
First, consider the rhombus
\[|x_i/a_i| + |x_j/a_j| \leq 1. \]
We have \(L = 4(a_1^2 + a_2^2)^{1/2} \) and
\[f_i(x_i) = a_j(1 - |x_i/a_i|), \quad j \neq i. \]
Thus, from (5) and (6), we have
\[\min(a_2/a_1, a_1/a_2) \leq p_2(a_1^2 + a_2^2)^{1/2} \leq \pi/2. \]
When \(a_1 = a_2 = S/\sqrt{2} \), the rhombus is a square of side \(S \), and (7) becomes \(\pi S \leq \pi/2 \), whereas the exact value to five places is \(p_2 S = 1.3765 \cdots \).

Next, consider the ellipse \((x_i/a_i)^2 + (x_j/a_j)^2 \leq 1 \) for which
\[f_i(x_i) = a_j(1 - (x_i/a_i)^2)^{1/2}, \quad j \neq i. \]
For simplicity, we worsen (6) by combining it with the classical isoperimetric inequality
\[L^2 \geq 4\pi A, \]
where \(A \), the area of the ellipse, is \(\pi a_1 a_2 \). Thus, we have
\[\left[\max(a_1, a_2) \right]^{-1} \leq p_2 \leq (a_1 a_2)^{-1/2}. \]
For the special case of a disc when \(a_1 = a_2 = R \), we attain equality on both sides and \(p_2 R = 1 \).

REFERENCES

THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY