On finite decompositions of $E^{2n-1}$
HTML articles powered by AMS MathViewer
- by Joseph Zaks
- Proc. Amer. Math. Soc. 20 (1969), 445-449
- DOI: https://doi.org/10.1090/S0002-9939-1969-0235543-X
- PDF | Request permission
References
- R. H. Bing and M. L. Curtis, Imbedding decompositions of $E^{3}$ in $E^{4}$, Proc. Amer. Math. Soc. 11 (1960), 149–155. MR 117692, DOI 10.1090/S0002-9939-1960-0117692-1 A. Flores, Über die Existenz $n$-dimensionaler Komplexe, die nicht in den ${R_{2n}}$ topologisch einbettbar sind, Ergeb. Math. Kolloq. 5 (1932/33), 12-24. D. S. Gillman, A five circle decomposition of $3$-space, Notices Amer. Math. Soc. 13 (1966), 594 (Abstract 636-65).
- Branko Grünbaum, Convex polytopes, Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. MR 0226496
- Ljudmila Keldyš, Some theorems on topological imbedding, General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961) Academic Press, New York; Publ. House Czech. Acad. Sci., Prague, 1962, pp. 230–234 (Russian). MR 0145494
- Ronald H. Rosen, Decomposing 3-space into circles and points, Proc. Amer. Math. Soc. 11 (1960), 918–928. MR 120611, DOI 10.1090/S0002-9939-1960-0120611-5
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 20 (1969), 445-449
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9939-1969-0235543-X
- MathSciNet review: 0235543