1. Introduction. Let A be a complete discrete valuation ring in characteristic zero with algebraically closed residue field of characteristic p. Let F be a one-parameter formal group law defined over A. Then there is an injection c of $\text{End}_A F$ onto a subring of A. If height $(F)=h<\infty$, $c(\text{End}_A F)$ is a free \mathbb{Z}_p-module of rank $\leq h$. We call F almost full over A if $c(\text{End}_A F)$ has rank h; in this case all the endomorphisms of F are defined over A, and we write simply $\text{End} F$. F is full over A if it is almost full over A and in addition $c(\text{End} F)$ is integrally closed in its fraction field \mathbb{F}_p.

The main theorem of the paper by Lubin [2] which contains the above results is a uniqueness theorem: If F and G are both full over A and $c(\text{End} F)=c(\text{End} G)$ (equivalently, $\Sigma_F=\Sigma_G$), then F and G are isomorphic over A. I will show that this result is a particular case of a classification theorem for formal groups almost full over A.

2. Statement of the theorem. The basic idea is to use the theory of the Tate module $T(F)$, as developed in [3]. (The reader should note that the theorems there remain true under our hypotheses.) $T(F)$ is a free \mathbb{Z}_p-module of rank h, and is a module over $R=c(\text{End} F)$. $V(F)=T(F)\otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is therefore a vector space over Σ_F, and must be of dimension one if F is almost full. In this case, $T(F)$ is isomorphic as an R-module to a lattice in Σ_F. Furthermore, by [3, 3.1] Σ is the order of this lattice, i.e., $R=\{x\in\Sigma_F: xT(F)\subseteq T(F)\}$.

Theorem. Two groups F and G almost full over A with $c(\text{End} F)=c(\text{End} G)=R$ are isomorphic if and only if $T(F)$ and $T(G)$ are isomorphic as R-modules. Furthermore, the isomorphism classes of R-modules occurring are precisely those of the lattices in Σ_F with order R.

In particular, the number of nonisomorphic such formal groups is finite and equals the class number of R, i.e., the number of isomorphism classes of such lattices.

3. Proof. All formal groups from now on will be almost full over A.

Proposition 3.1 (Lubin). F and G are isogenous if and only if $\Sigma_F=\Sigma_G$.

Proof. The necessity of the condition is [3, 3.0]. Conversely, if $\Sigma_F=\Sigma_G$, F and G are both isogenous to full groups with the same Σ.
A CLASSIFICATION OF ALMOST FULL FORMAL GROUPS 427

by [3, 3.2], and these in turn are isomorphic by the uniqueness theorem.

Lemma 3.2. There is an H with $c(\text{End } H) = R$ such that $T(H)$ is free of rank one as an R-module.

Proof. We view $T(F)$ as a lattice in $V(F)$. Let k be the fraction field of A, K its algebraic closure. The Galois group $G = \text{Gal } (K/k)$ acts on $T(F)$ and commutes with the action of A-endomorphisms, so it acts Σ_F-linearly on $V(F)$. Since $V(F)$ is one-dimensional over Σ_F, the action is given by a homomorphism $\rho: G \rightarrow \Sigma_F^\times$. As $T(F)$ is stable under G, and R is the order of $T(F)$, we have $\rho(G) \subseteq R$. Hence for any $b \in T(F)$, Rb is a lattice stable under G. Therefore it defines an H isogenous to F over A, with $T(H)$ isomorphic to Rb as an R-module [3, 2.3] and $c(\text{End } H)$ equal to the order of $T(H)$, i.e., R.

Now let L be any sublattice of $T(H)$ with order R. As before, $\rho(G) \subseteq R$, so L is stable under G; hence L defines a formal group G isogenous to H over A and having $T(G) \cong L$. Conversely, if G is any formal group with $c(\text{End } G) = R$, then as we saw G is isogenous to H and hence [3, 2.2] occurs as the group associated to some such lattice L. Now since $T(H)$ is free of rank one over R, the lattices in it with order R correspond precisely to the ideals I of R with order R. We now must prove that such ideals are isomorphic if and only if the corresponding groups are; this will complete the proof of the theorem, since any lattice in Σ_H is isomorphic (under multiplication by an integer) to one lying in R.

Suppose first that I and J are isomorphic R-modules. As the isomorphism extends to a Σ_H vector space automorphism of Σ_H, it is given by a scalar multiplication, so $I = \lambda J$. If $\lambda \in R$, let $f: G \rightarrow H$ be the isogeny with $f(T(G)) = J T(H)$. Then $[\lambda]_H \circ f: G \rightarrow H$ is an isogeny with $[\lambda]_H \circ f(T(G)) = [\lambda]_H(J T(H)) = \lambda J T(H) = I T(H)$, and so G serves also as the formal group corresponding to I. If $\lambda \not\in R$, choose an integer n with $n\lambda \in R$; then the group for I is isomorphic to that for $nI = (n\lambda)J$, which is in turn isomorphic to that for J.

Conversely, suppose the groups for I and J are isomorphic. Then we have a G and two isogenies $f, g: G \rightarrow H$ with $f(T(G)) = I T(H), \ g(T(G)) = J T(H)$. Replacing I by an integer multiple of itself if necessary, we may assume $I \subseteq J$. Then by [3, 2.2] there is an isogeny $h: G \rightarrow G$ such that $f = g \circ h$. If $h = [x]_G$ for $x \in R$, then $g \circ h = [x]_G \circ g$, since c of these two maps is the same (see [2, 2.1.1]). Hence $I T(H) = f(T(G)) = x g(T(G)) = x J T(H)$. As $T(H)$ is free, $I = x J$ and the modules are isomorphic.

4. Remarks. 1. The uniqueness theorem of Lubin is of course a
particular case of our theorem, since the unique integrally closed order in a local field Σ is a discrete valuation ring and hence has just one ideal class. We have not, however, given an independent proof of that theorem; it was used in the proof of Proposition 3.1.

2. Our theorem assumes that R occurs as $c(\text{End } F)$ for some F defined over A. Lubin has shown in [3, 3.2] that for any R there is some A over which R occurs, but for a fixed A not all R are possible. To be more specific, let us fix Σ and take the unique group F with $c(\text{End } F)$ maximal in Σ; this group is full over $c(\text{End } F)$ [4, Theorem 1], and so is available whenever k contains Σ. The argument of Lemma 3.2 applied to F shows then that those R which occur are precisely those which contain the group $\rho(\mathfrak{g})$.

3. If we take the integral closure of A in a finite extension of k, we get another ring satisfying our hypotheses. This extension reduces $\rho(\mathfrak{g})$ and thus makes more orders possible, but the theorem implies that it can have no other effect. Once a single group F with $c(\text{End } F) = R$ is defined over A, so are all the others; expanding k cannot introduce any new isomorphism types, nor can any nonisomorphic groups become isomorphic over the larger ring.

4. The technique used here resembles that of a standard theorem on the isomorphism types of elliptic curves with complex multiplication. Serre [5] has drawn attention to the fact that that result can be interpreted as saying that the isomorphism classes of curves with endomorphism ring R are a principal homogeneous space over the group of rank one projective R-modules. Similar results have been proved for certain abelian varieties when the endomorphism ring is a maximal order. It may therefore be useful to point out that no such formulation is possible here: the modules occurring in the theorem need not be projective, nor need they form a group. (An example is easily constructed following Exercise 18 [1, p. 94].) A similar example shows that the use of Lemma 3.2 cannot be avoided; there is an almost full group G and ideals $I \neq J$ of $c(\text{End } G)$ with $IT(G) = JT(G)$.

References

Harvard University