A REMARK ON A COMPARISON THEOREM
OF SWANSON

KURT KREITH

In [1] C. A. Swanson proves a comparison theorem for sufficiently regular, second order elliptic equations of the form

\[L^*u = \sum_{i,j=1}^{n} D_i(a_{ij}D_ju) + 2 \sum_i b_i D_iu + c^*u = 0, \]

\[Lv = \sum_{i,j=1}^{n} D_i(a_{ij}D_jv) + 2 \sum_i b_i D_iv + cv = 0, \]

defined in a domain \(R \) with piecewise continuous unit normal on the boundary \(B \). Given that \(L \) is a strict Sturmian majorant of \(L^* \) and that there exists a nontrivial solution of (1) satisfying \(u = 0 \) on \(B \), Swanson shows that every solution of (2) has a zero in \(\bar{R} \). This result is not "strong" in the sense of [2] where it is shown that under similar hypotheses in the selfadjoint case, every solution of (2) must vanish in the interior of \(R \).

The purpose of this note is to point out that if \(B \) is of bounded curvature, then one can use the method of [1] to arrive at this stronger conclusion even in the nonselfadjoint case. Specifically, if it can be shown that every solution of (2) which is not zero in \(R \) and vanishes at a point \(x_0 \in B \) must satisfy \(\frac{d}{dx} (x_0) \neq 0 \), then it is clear from the proof that the Lemma of [1] can be altered to read: "Suppose \(g \) satisfies \(g \det(a_{ij}) > -\sum_{i=1}^{n} b_i B_i \). If there exists \(u \in C^1 \) not identically zero such that \(J[u] \leq 0 \), then every solution \(v \) of \(Lv = 0 \) vanishes at some point of \(R \)." A strong version of Swanson's comparison theorem follows readily from this change, and in the case of ordinary differential equations (i.e. \(n = 1 \)) this fact is observed in [1].

If \(c < 0 \) near \(B \) and \(B \) is of bounded curvature, then it follows from the Hopf maximum principle [3] that \((\partial v/\partial v)(x_0) \neq 0 \) whenever \(v(x_0) = 0 \), \(x_0 \in B \). However, even if \(c \) is merely bounded, the same conclusion can be derived.

To see this we assume \(v < 0 \) in \(R \) and \(v(x_0) = 0 \) for some \(x_0 \in B \). Without loss of generality we may assume that \(B \) is tangent to the plane \(x_1 = b \) and that the exterior normal to \(B \) at \(x_0 \) is in the positive \(x_1 \)-direction. It is known (see [4, p. 73]) that for \((b - a) \) sufficiently small there exist positive constants \(\alpha, \beta \) such that

Received by the editors November 2, 1967.

549
\[w(x) = 1 - \beta e^{(x_1 - a)} > 0 \quad \text{for } a \leq x_1 \leq b; \]
\[Lw \leq 0 \quad \text{for } a \leq x_1 \leq b. \]

Furthermore, a direct computation (see [4, p. 72]) shows that the Hopf maximum principle applies to \(v/w \) in the intersection of the slab \(a < x_1 < b \) with \(R \). Since \(v/w \) has a nonnegative maximum at \(x_0 \), it follows that at \(x_0 \)

\[0 < \frac{\partial}{\partial v} \left(\frac{v}{w} \right) = \frac{w(\partial v/\partial x_1) - v(\partial w/\partial x_1)}{w^2} = \frac{1}{w} \frac{\partial v}{\partial v}. \]

Therefore \(\partial v/\partial v > 0 \) at \(x_0 \) and the strong comparison theorem follows.

These remarks can also be used to strengthen some of the conclusions of [5] for comparison theorems in unbounded domains.

Bibliography

University of California, Davis