A generalization of quasi-Frobenius rings
HTML articles powered by AMS MathViewer
- by Hiroyuki Tachikawa
- Proc. Amer. Math. Soc. 20 (1969), 471-476
- DOI: https://doi.org/10.1090/S0002-9939-1969-0237568-7
- PDF | Request permission
References
- Gorô Azumaya, Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt’s theorem, Nagoya Math. J. 1 (1950), 117–124. MR 37832
- Goro Azumaya, Completely faithful modules and self-injective rings, Nagoya Math. J. 27 (1966), 697–708. MR 213389
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8 —, The Morita theorems, Lecture notes, Univ. of Oregon, Eugene, Oregon, 1962.
- P. M. Cohn, Quadratic extensions of skew fields, Proc. London Math. Soc. (3) 11 (1961), 531–556. MR 136633, DOI 10.1112/plms/s3-11.1.531
- Yutaka Kawada, On Köthe’s problem concerning algebras for which every indecomposable module is cyclic. I, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 7 (1962), 154–230 (1962). MR 141687
- Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83–142. MR 96700
- Kiiti Morita, On $S$-rings in the sense of F. Kasch, Nagoya Math. J. 27 (1966), 687–695. MR 199230
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Tadasi Nakayama, On Frobeniusean algebras. II, Ann. of Math. (2) 42 (1941), 1–21. MR 4237, DOI 10.2307/1968984
- Alex Rosenberg and Daniel Zelinsky, Finiteness of the injective hull, Math. Z. 70 (1958/59), 372–380. MR 105434, DOI 10.1007/BF01558598
- Hiroyuki Tachikawa, On rings for which every indecomposable right module has a unique maximal submodule, Math. Z. 71 (1959), 200–222. MR 107662, DOI 10.1007/BF01181399
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 20 (1969), 471-476
- MSC: Primary 16.50
- DOI: https://doi.org/10.1090/S0002-9939-1969-0237568-7
- MathSciNet review: 0237568