Remarks on the reduction theory of von Neumann algebras
HTML articles powered by AMS MathViewer
- by Masamichi Takesaki
- Proc. Amer. Math. Soc. 20 (1969), 434-438
- DOI: https://doi.org/10.1090/S0002-9939-1969-0239434-X
- PDF | Request permission
References
- Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- J. Dixmier, Dual et quasi-dual d’une algèbre de Banach involutive, Trans. Amer. Math. Soc. 104 (1962), 278–283 (French). MR 139960, DOI 10.1090/S0002-9947-1962-0139960-6
- Edward G. Effros, The Borel space of von Neumann algebras on a separable Hilbert space, Pacific J. Math. 15 (1965), 1153–1164. MR 185456
- Edward G. Effros, Global structure in von Neumann algebras, Trans. Amer. Math. Soc. 121 (1966), 434–454. MR 192360, DOI 10.1090/S0002-9947-1966-0192360-9
- George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, DOI 10.1090/S0002-9947-1957-0089999-2 S. Sakai, The theory of ${W^\ast }$-algebras, Mimeographed note, Yale Univ., New Haven, Conn., 1962.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 20 (1969), 434-438
- MSC: Primary 46.65
- DOI: https://doi.org/10.1090/S0002-9939-1969-0239434-X
- MathSciNet review: 0239434