A GENERATOR FOR A SEMIGROUP OF NONLINEAR TRANSFORMATIONS

DOROTHY RUTLEDGE

Let S be a finite-dimensional Hilbert space and T a function from $[0, \infty)$ to the set of continuous transformations from S to S satisfying

Condition (1) $T(0) = I$, and $T(x)T(y) = T(x+y)$ if $x, y \geq 0$,

Condition (2) if p is in S and $g_p(x) = T(x)p$ for all $x \geq 0$, then g_p is continuous,

Condition (3) for each $x \geq 0$, $T(x)$ is nonexpansive ($\|T(x)p - T(x)q\| \leq \|p - q\|$ for all p and q in S),

Condition (4) S contains a rest point r (i.e., $T(x)r = r$ for all $x \geq 0$).

For each $\delta > 0$, let $A_{\delta} = (1/\delta)[T(\delta) - I]$. For each p in S for which $\lim_{t \to 0} A_{\delta}p$ exists, let $A_{\delta}p = \lim_{t \to 0} A_{\delta}p$.

It is well known that even for S infinite-dimensional, if the semigroup $\{T(x) | x \geq 0\}$ is linear (i.e., each $T(x)$ is linear), then the function A, called the infinitesimal generator of the semigroup, is defined on a dense subset of S, and for each p in S, and each $x \geq 0$, $\lim_{n \to \infty} [I - (x/n)A]^{-n}p = T(x)p$. (See, for example, [1].)

In [2] and [3], J. W. Neuberger considered semigroups similar to the ones considered in this paper, with the following condition assumed:

Condition (5) there is a dense subset D of S such that if p is in D, then the derivative g_p' is continuous with domain $[0, \infty)$. In [3] he gave the following result, which will be used in a proof in this paper.

Theorem 1. Suppose S is a normed linear complete space and Conditions (1), (2), (3), and (5) are satisfied. If p is in S and $x > 0$ and $\epsilon > 0$, there is a positive number δ such that if $0 < y \leq x$ and $0 = t_0 < t_1 < \cdots < t_{n+1} = y$ and $|t_{i+1} - t_i| < \delta$ for $i = 0, 1, 2, \cdots, n$, then

$$\limsup_{t_0, t_1, \ldots, t_n \to 0} \left\| \prod_{i=0}^{n} [I - (t_{i+1} - t_i)A_{t_i}]^{-1}p - T(y)p \right\| < \epsilon.$$

The purpose of this paper is to define a set $\{I_x | x \geq 0\}$ of functions in terms of the functions A_x in such a way that the functions I_x generate the semigroup. The main results follow.

Presented to the Society, January 24, 1967; received by the editors November 20, 1967.

1 This paper is part of the author's Doctoral dissertation at Emory University, prepared under the supervision of J. W. Neuberger.
Theorem 2. If \(\{ \delta_i \}_{i=1}^\infty \) is a sequence of positive numbers converging to 0, then there is a subsequence \(\{ \epsilon_i \}_{i=1}^\infty \) of \(\{ \delta_i \}_{i=1}^\infty \) such that if \(x \geq 0 \) and \(p \) is in \(S \), then \(\{(I-xA_\epsilon)^{-1}p\}_{i=1}^\infty \) converges to a point in \(S \). For such a sequence \(\{ \epsilon_i \}_{i=1}^\infty \), if \(x \geq 0 \), let \(I_x \) be the function from \(S \) into \(S \) defined by

\[
I_x p = \lim_{n \to \infty} (I - xA_{\epsilon_n})^{-1}p
\]

for each \(p \) in \(S \). Then each of the following is true.

(i) \(\|I_x p - I_x q\| \leq \|p - q\| \) for all \(x \geq 0 \) and all \(p \) and \(q \) in \(S \).

(ii) If \(x > 0 \), then \(\lim_{n \to x} I_x p = I_x p \).

(iii) If Condition (5) is satisfied, then \(\lim_{n \to \infty} (I_{y/n})^n p = T(y)p \) for all \(y > 0 \) and all \(p \) in \(S \).

This theorem may be compared to a result found recently by Shinnosuke Ôharu [4], who considered \(S \) to be a Banach space and assumed conditions which implied Conditions (1), (2), (3), and (5). For a nonlinear semigroup with these properties he found the following.

Theorem 3. Let \(\{T(x) | x \geq 0\} \) be a semigroup as described above, and let \(A \) be the infinitesimal generator such that for some \(x_0 > 0 \), the range of \(I - x_0 A \) is dense in \(S \). Then for every \(x > 0 \), there exist the function \((I - xA)^{-1} \) and its unique extension \(L(x) \) onto \(S \), which is nonexpansive, and \(T(x) \) is represented by

\[
\lim_{n \to \infty} L(x/n)^n p = T(x)p
\]

for each \(x \geq 0 \) and each \(p \) in \(S \).

If a semigroup satisfies the assumptions for both Theorem 3 and (iii) of Theorem 2, then \(I_x = L(x) \) for \(x \geq 0 \). However, Theorem 2 does not assume that for some \(x > 0 \), the range of \(I - xA \) is dense in \(S \), and also Theorem 2 does not state that the collection \(\{I_x | x \geq 0\} \) is unique.

The proof of Theorem 2 will be developed by a sequence of lemmas, for which \(S \) is finite-dimensional and Conditions (1)-(4) are assumed.

Lemma 1. If \(p \) is in \(S \) and \(x > 0 \) and \(\{ \delta_i \}_{i=1}^\infty \) is a sequence of positive numbers, then there is a subsequence \(\{ \epsilon_i \}_{i=1}^\infty \) of \(\{ \delta_i \}_{i=1}^\infty \) such that \(\{(I-xA_\epsilon)^{-1}p\}_{i=1}^\infty \) converges to a point in \(S \).

Proof. In [2], Neuberger has a short proof that for \(x > 0 \) and \(\delta > 0 \), \((I-xA_\delta)^{-1} \) exists, has domain \(S \), and is nonexpansive.

Now there is a rest point \(r \) in \(S \), and thus for \(\delta > 0 \), \((I-xA_\delta)^{-1}r = r \). Thus
\[\| r - (I - xA_s)^{-1}p \| = \| (I - xA_s)^{-1}r - (I - xA_s)^{-1}p \| \leq \| r - p \|. \]

Then the set \(\{(I - xA_s)^{-1}p \mid i = 1, 2, \ldots \} \) is bounded, and since \(S \) is finite-dimensional, the lemma follows.

Lemma 2. If \(x > 0 \) and \(\{\delta_i\}_{i=1}^\infty \) is a sequence of positive numbers converging to 0, then there is a subsequence \(\{e_i\}_{i=1}^\infty \) of \(\{\delta_i\}_{i=1}^\infty \) such that for all \(p \) in \(S \), \(\{(I - xA_{e_i})^{-1}p\}_{i=1}^\infty \) converges.

Proof. Let \(K = \{p_1, p_2, \ldots \} \) be a dense subset of \(S \). By Lemma 1, there is a subsequence \(\{\delta_{ii}\}_{i=1}^\infty \) of \(\{\delta_i\}_{i=1}^\infty \) such that \(\{(I - xA_{\delta_{ii}})^{-1}p_i\}_{i=1}^\infty \) converges. Continuing, for each \(n > 1 \), a subsequence \(\{\delta_{n1}\}_{i=1}^\infty \) of \(\{\delta_{(n-1)i}\}_{i=1}^\infty \) can be obtained such that \(\{(I - xA_{\delta_{n1}})^{-1}p_n\}_{i=1}^\infty \) converges. Consider the subsequence \(\{\delta_{ii}\}_{i=1}^\infty \) of \(\{\delta_{i\,i}\}_{i=1}^\infty \). It is easily seen that for each \(p_n \) in \(K \), \(\{(I - xA_{\delta_{n1}})^{-1}p_n\}_{i=1}^\infty \) converges to the sequential limit of \(\{(I - xA_{\delta_{ii}})^{-1}p_n\}_{i=1}^\infty \).

For each positive integer \(i \), let \(e_i = \delta_{ii} \). Then for all \(q \) in \(K \), \(\{(I - xA_{\delta_{ii}})^{-1}q\}_{i=1}^\infty \) converges. Suppose \(p \) is in \(S \). If \(e > 0 \), there is some \(q \) in \(K \) such that \(\| p - q \| < e/3 \). There is some positive integer \(N \) such that \(n > N \) and \(m > N \), then \(\| (I - xA_{e_n})^{-1}q - (I - xA_{e_m})^{-1}q \| < e/3 \). Since \(\| p - q \| < e/3 \), it follows that \(\| (I - xA_{e_n})^{-1}p - (I - xA_{e_m})^{-1}q \| < e/3 \) and \(\| (I - xA_{e_n})^{-1}p - (I - xA_{e_m})^{-1}q \| < e/3 \). It follows that \(\| (I - xA_{e_n})^{-1}p - (I - xA_{e_m})^{-1}p \| < e \), and thus \(\{(I - xA_{\delta_{ii}})^{-1}p\}_{i=1}^\infty \) is a Cauchy sequence and hence converges to a point in \(S \). The lemma is proved.

Lemma 3. Suppose \(Q \) is a countable subset of \((0, \infty) \) and \(\{\delta_i\}_{i=1}^\infty \) is a sequence of positive numbers converging to 0. Then there is a subsequence \(\{e_i\}_{i=1}^\infty \) of \(\{\delta_i\}_{i=1}^\infty \) such that for each \(x \) in \(Q \) and each \(p \) in \(S \), \(\{(I - xA_{e_i})^{-1}p\}_{i=1}^\infty \) converges to a point in \(S \).

Proof. Let \(Q = \{x_1, x_2, \ldots \} \) be a subset of \((0, \infty) \). By Lemma 2, there is a subsequence \(\{\delta_{i1}\}_{i=1}^\infty \) of \(\{\delta_i\}_{i=1}^\infty \) such that \(\{(I - x_{i1}A_i)^{-1}p\}_{i=1}^\infty \) converges for all \(p \) in \(S \). Then there is a subsequence \(\{\delta_{i2}\}_{i=1}^\infty \) of \(\{\delta_{i1}\}_{i=1}^\infty \) such that \(\{(I - x_{i2}A_{e_{i1}})^{-1}p\}_{i=1}^\infty \) converges for all \(p \) in \(S \). By continuing this process, which is similar to that used in the proof of Lemma 2, one can show that the subsequence \(\{\delta_{ii}\}_{i=1}^\infty \) of \(\{\delta_{i\,i}\}_{i=1}^\infty \) has the property that for every \(x \) in \(Q \) and every \(p \) in \(S \), \(\{(I - xA_{\delta_{ii}})^{-1}p\}_{i=1}^\infty \) converges.

Lemma 4. Suppose \(p \) is in \(S \). If \(\delta > 0 \), let \(F_\delta \) be the function from \([0, \infty) \) into \(S \) defined by \(F_\delta(x) = (I - xA_s)^{-1}p \). Then \(F_\delta \) is continuous.

Proof. Let \(x \geq 0 \). Let \(M \) be a positive number greater than \(\|A_s(I - xA_s)^{-1}p\| \). Let \(\epsilon > 0 \). Let \(y \geq 0 \) such that \(y - x < \epsilon/M \). Then
\[\|F_a(y) - F_a(x)\| = \|(I - yA_a)^{-1}p - (I - xA_a)^{-1}p\| \]
\[= \|(I - yA_a)^{-1}p - (I - yA_a)^{-1}(I - yA_a)(I - xA_a)^{-1}p\| \]
\[\leq \|p - (I - yA_a)(I - xA_a)^{-1}p\| \]
\[= \|(I - xA_a)(I - xA_a)^{-1}p - (I - yA_a)(I - xA_a)^{-1}p\| \]
\[= \|y - x\| \|A_a(I - xA_a)^{-1}p\| < \epsilon. \]

Lemma 5. If \(p \) is in \(S \) and \(c > 0 \), then the set
\[\{\|A_a(I - xA_a)^{-1}p\| : x \geq c, \delta > 0\} \]

is bounded above.

Proof. From the proof of Lemma 1, it is easily seen that the set
\[\{\|y - x\| A_a(I - xA_a)^{-1}p\| : x \geq 0, \delta > 0\} \]
is bounded above. Let \(M > 0 \) be an upper bound to this set. If \(x \geq c \) and \(\delta > 0 \), then
\[\|A_a(I - xA_a)^{-1}p\| \]
\[= \left(\frac{1}{x}\right)\|y - x\| A_a(I - xA_a)^{-1}p\| \]
\[= \left(\frac{1}{x}\right)\|(I - xA_a)(I - xA_a)^{-1}p - (I - xA_a)^{-1}p\| \]
\[= \left(\frac{1}{x}\right)\|p - (I - xA_a)^{-1}p\| \leq \left(\frac{1}{c}\right)\|p\| + \|p\| \leq \left(\frac{1}{c}\right)\|p\| + M. \]

Lemma 6. Suppose \(p \) is in \(S \) and for each \(x \geq 0 \), \(F_a(x) = (I - xA_a)^{-1}p \). Then the set \(\{F_a : \delta > 0\} \) is equicontinuous on \((0, \infty)\).

Proof. Let \(x > 0 \). By Lemma 5, there is an upper bound \(M > 0 \) to the set \(\{|y - x| A_a(I - xA_a)^{-1}p\| : x \geq 0, \delta > 0\} \). Let \(\epsilon > 0 \). If \(y \) is a positive number such that \(|x - y| < \epsilon/M\), then by the same argument as that used in the proof of Lemma 4, \(\|F_a(x) - F_a(y)\| < \epsilon \) for all \(\delta > 0 \).

Lemma 7. If \(\{\delta_i\}_{i=1}^\infty \) is a sequence of positive numbers converging to 0, there is a subsequence \(\{\epsilon_i\}_{i=1}^\infty \) of \(\{\delta_i\}_{i=1}^\infty \) such that for each \(x \geq 0 \) and each \(p \) in \(S \), \(\{(I - xA_a)^{-1}p\}_{i=1}^\infty \) converges to a point in \(S \).

Proof. Let \(Q \) be a countable dense subset of \((0, \infty)\). By Lemma 3, there is a subsequence \(\{\epsilon_i\}_{i=1}^\infty \) of \(\{\delta_i\}_{i=1}^\infty \) such that for all \(x \) in \(Q \) and all \(p \) in \(S \), \(\{(I - xA_a)^{-1}p\}_{i=1}^\infty \) converges. It will be shown that for all \(x \geq 0 \) and all \(p \) in \(S \), this sequence converges.

For each \(q \) in \(S \) and each positive integer \(i \), let
\[F_{\epsilon_i}(x) = (I - xA_{\epsilon_i})^{-1}q \]
for all \(x \geq 0 \). Let \(p \) be in \(S \). From Lemma 6, the set \(\{F_{\epsilon_i} : i = 1, 2, \ldots\} \) is equicontinuous on \((0, \infty)\). Also, for each \(z \) in the dense subset \(Q \)
of \((0, \infty)\), the sequence \[\{ F_{p,i}(x) \}_{i=1}^\infty \] converges. Thus it follows that for every \(x\) in \((0, \infty)\), the sequence \[\{ F_{p,i}(x) \}_{i=1}^\infty \] is a Cauchy sequence and hence converges to some point in \(S\). That is, for every \(x > 0\), \[\{ (I - xA_{e_i})^{-1}p \}_{i=1}^\infty \] converges. Since for \(x = 0\) the sequence clearly converges, the lemma is true, and the first statement in Theorem 2 is proved.

Consider the sequence \(\{ \epsilon_i \}_{i=1}^\infty \) given in the proof of Lemma 7 and consider the functions \(F_{p,i} \) defined in the proof. For each \(x \geq 0\) and each \(p\) in \(S\), let \(\tau_xp \) be the sequential limit of \(\{ (7 - xA_{e_i})^{-1} \} P \}_{i=1}^\infty \). For each \(p\) in \(S\), let \(G_p \) be the function from \([0, \infty)\) into \(S\) defined by \(G_p(x) = \tau_xp \), so that for each \(x \geq 0\), \(G_p(x) \) is the sequential limit of \(\{ F_{p,i}(x) \}_{i=1}^\infty \). These functions will be used in Lemmas 8 and 9 below.

Lemma 8. For each \(x \geq 0\), \(I_x \) is nonexpansive.

Proof. Let \(x \geq 0\), and let each of \(p\) and \(q\) be in \(S\). If \(\epsilon > 0\) there is a positive integer \(n\) such that \[\| (I - xA_{e_n})^{-1}p - \tau_xp \| < \epsilon/2 \] and \[\| (I - xA_{e_n})^{-1}q - \tau_xq \| < \epsilon/2. \] From this it follows that \[\| I_xp - \tau_xq \| < \| (I - xA_{e_n})^{-1}p - (I - xA_{e_n})^{-1}q \| + \epsilon. \] Since \((I - xA_{e_n})^{-1} \) is nonexpansive, it follows that \(\| I_xp - \tau_xq \| < \| p - q \| + \epsilon. \) Thus \(I_x \) is nonexpansive, and (i) of Theorem 2 is proved.

Lemma 9. For each \(p\) in \(S\), \(G_p \) is continuous on \((0, \infty)\).

Proof. Suppose \(p\) is in \(S\). Since for each \(x > 0\), \(G_p(x) \) is the sequential limit of \(\{ F_{p,i}(x) \}_{i=1}^\infty \), and since the set \{ \(F_{p,i} \) \(i = 1, 2, \ldots \) \} is equicontinuous on \((0, \infty)\), it follows that \(G_p \) is continuous on \((0, \infty)\).

Since for each \(p\) in \(S\) and each \(x \geq 0\), \(I_xp = G_p(x) \), it follows from Lemma 9 that for \(x > 0\) and \(p\) in \(S\), \(\lim_{y \to x} I_yp = \tau_xp \), and so (ii) of Theorem 2 is proved.

All of the above lemmas would still be true if, instead of assuming that \(S\) contains a rest point, it is assumed that for each point \(p\) in \(S\), \[\{ \| (I - xA_{e_i})^{-1}p \| : \delta > 0, \ x \geq 0 \} \] is bounded above. Requiring this boundedness is a weaker condition than requiring a rest point, since if \(S\) contains a rest point, the above set is bounded above. However, to assume \(S\) contains a rest point does not appear to be a very strong condition, since if there is at least one point \(p\) in \(S\) such that \(g_p \) is not one-to-one, then \(S\) contains a rest point. For if \(g_p(u) = g_p(v) \) where \(0 \leq u < v\), then setting \(q = g_p(u) \) it follows that \[g_q(v - u) = T(v - u)q = T(v - u)g_p(u) \] \[= T(v - u)T(u)p = T(v)p = g_p(v) = q. \]
Then, since \(g_\varphi(v-u) = q \) and \(v-u > 0 \), \(g_\varphi \) is said to be periodic of period \(v-u \), and the following result \([5]\) of the author can be used to show that \((1/(v-u))\int_0^{v-u} g_\varphi \) is a rest point.

Theorem 4. Assume \(S \) is a Hilbert space and Conditions (1), (2), and (3) are satisfied. If for some point \(p \) in \(S \), \(g_\varphi \) is periodic of period \(\varepsilon > 0 \), then \((1/\varepsilon)\int_0^\varepsilon g_\varphi \) is a rest point.

For Lemma 10, Condition (5) will also be assumed. For Lemma 10, let \(E \) denote a sequence \(\{\varepsilon_i\}_{i=1}^\infty \) of positive numbers converging to 0 such that for every \(x \geq 0 \) and every \(p \) in \(S \), \(\{(I-\alpha A_{\epsilon_i})^{-1}p\}_{i=1}^\infty \) converges, and let \(I_{\alpha}p \) be the sequential limit. Then, by Lemma 8, for each \(x \geq 0 \), \(I_x \) is nonexpansive.

Lemma 10. Suppose \(y > 0 \) and \(p \) is in \(S \). If \(\varepsilon > 0 \), there is a \(\delta > 0 \) such that if \(0=t_0 < t_1 < \cdots < t_{n+1} = y \) and \(|t_{i+1} - t_i| < \delta \) for \(i = 0, 1, \ldots, n \), then

\[
\left\| \prod_{i=0}^{n} I_{t_{i+1} - t_i} p - T(y)p \right\| < \varepsilon.
\]

Proof. Let \(\varepsilon > 0 \). Using Theorem 1, let \(\delta \) be a positive number such that if \(0=t_0 < t_1 < \cdots < t_{n+1} = y \) and \(|t_{i+1} - t_i| < \delta \) for \(i = 0, 1, 2, \ldots, n \), then

\[
\limsup_{\delta_0, \delta_1, \ldots, \delta_n \to 0} \left\| \prod_{i=0}^{n} (I - (t_{i+1} - t_i) A_{\delta_i})^{-1} p - T(y) p \right\| < \varepsilon/2.
\]

Take \(0=t_0 < t_1 < \cdots < t_{n+1} = y \) where \(|t_{i+1} - t_i| < \delta \) for \(i = 0, 1, \ldots, n \). There is a positive number \(k \) such that if each of \(\delta_0, \delta_1, \ldots, \delta_n \) is less than \(k \), then

\[
\left\| \prod_{i=0}^{n} (I - (t_{i+1} - t_i) A_{\delta_i})^{-1} p - T(y)p \right\| < \varepsilon/2.
\]

Now \(I_{t_{n+1} - t_n} p = \lim_{m \to \infty} (I - (t_{n+1} - t_n) A_{\delta_m})^{-1} p \), and so \(\delta_n \) can be chosen to be a number in the sequence \(E \) which is less than \(k \) and such that

\[
\left\| (I - (t_{n+1} - t_n) A_{\delta_n})^{-1} p - I_{t_{n+1} - t_n} p \right\| < \varepsilon/(n + 1).
\]

Since \(I_{t_n - t_{n-1}} \) is nonexpansive, it follows that

(1) \[
\left\| I_{t_n - t_{n-1}} (I - (t_{n+1} - t_n) A_{\delta_n})^{-1} p - I_{t_n - t_{n-1}} I_{t_{n+1} - t_n} p \right\| < \varepsilon/2(n + 1).
\]

Now

\[
I_{t_n - t_{n-1}} (I - (t_{n+1} - t_n) A_{\delta_n})^{-1} p = \lim_{m \to \infty} (I - (t_n - t_{n-1}) A_{\delta_n})^{-1} (I - (t_{n+1} - t_n) A_{\delta_n})^{-1} p
\]
and so δ_{n-1} can be chosen to be a number in sequence E which is less than k and such that
\begin{equation}
\| [I - (t_n - t_{n-1}) A_{\delta_{n-1}}]^{-1} [I - (t_{n+1} - t_n) A_{\delta_n}]^{-1} p - I_{t_{n-1}} [I - (t_{n+1} - t_n) A_{\delta_n}]^{-1} p \| < \epsilon/2(n + 1).
\end{equation}

From (1) and (2) it follows that
\begin{align*}
\| I_{t_{n-1}} I_{t_{n+1} - t_n} p - [I - (t_n - t_{n-1}) A_{\delta_{n-1}}]^{-1} [I - (t_{n+1} - t_n) A_{\delta_n}]^{-1} p \| & < 2\epsilon/(n + 1).
\end{align*}

Since $I_{t_{n-1} - t_{n-2}}$ is nonexpansive, it follows that
\begin{align*}
\| I_{t_{n-1} - t_{n-2}} I_{t_{n+1} - t_n} I_{t_{n+1} - t_n} p - I_{t_{n-1} - t_{n-2}} [I - (t_n - t_{n-1}) A_{\delta_{n-1}}]^{-1} [I - (t_{n+1} - t_n) A_{\delta_n}]^{-1} p \| & < 2\epsilon/(n + 1).
\end{align*}

Now
\begin{align*}
I_{t_{n-1} - t_{n-2}} [I - (t_n - t_{n-1}) A_{\delta_{n-1}}]^{-1} [I - (t_{n+1} - t_n) A_{\delta_n}]^{-1} p &= \lim_{m \to \infty} [I - (t_{n-1} - t_{n-2}) A_{\epsilon_{n_m}}]^{-1} [I - (t_{n-1} - t_{n-2}) A_{\delta_{n-1}}]^{-1} \\
&\quad \cdot [I - (t_{n+1} - t_n) A_{\delta_n}]^{-1} p.
\end{align*}

Let δ_{n-2} be a number in sequence E which is less than k and such that
\begin{align*}
\| [I - (t_{n-1} - t_{n-2}) A_{\delta_{n-2}}]^{-1} [I - (t_n - t_{n-1}) A_{\delta_{n-1}}]^{-1} [I - (t_{n+1} - t_n) A_{\delta_n}]^{-1} p - I_{t_{n-1} - t_{n-1}} [I - (t_n - t_{n-1}) A_{\delta_{n-1}}]^{-1} [I - (t_{n+1} - t_n) A_{\delta_n}]^{-1} p \| & < \epsilon/2(n + 1).
\end{align*}

From (3) and (4) it follows that
\begin{align*}
\| I_{t_{n-1} - t_{n-2}} I_{t_{n-1} - t_{n-1}} I_{t_{n+1} - t_n} p - [I - (t_{n-1} - t_{n-2}) A_{\delta_{n-2}}]^{-1} \\
&\quad \cdot [I - (t_n - t_{n-1}) A_{\delta_{n-1}}]^{-1} [I - (t_{n+1} - t_n) A_{\delta_n}]^{-1} p \| < 3\epsilon/2(n + 1).
\end{align*}

Continuing this process of choosing $\delta_n, \delta_{n-1}, \ldots, \delta_0$, it can be seen that
\begin{align*}
\left\| \prod_{i=0}^{n} I_{t_{i+1} - t_i} p - \prod_{i=0}^{n} [I - (t_{i+1} - t_i) A_{\delta_i}]^{-1} p \right\| & < (n + 1)\epsilon/2(n + 1).
\end{align*}

But each of $\delta_0, \delta_1, \ldots, \delta_n$ is less than k and thus
\begin{align*}
\left\| \prod_{i=0}^{n} [I - (t_{i+1} - t_i) A_{\delta_i}]^{-1} p - T(\gamma) p \right\| & < \epsilon/2.
\end{align*}
From (5) and (6) it follows that
\[\left\| \prod_{i=0}^{n} I_{t_{i+1} - t_{i}} p - T(y)p \right\| < \epsilon, \]
and the lemma is proved.

It follows from Lemma 10 that \(\lim_{n \to \infty} (I_{y/n})^n p = T(y)p \), and thus (iii) of Theorem 2 is proved.

References

Agnes Scott College