CONCERNING SEMICONNECTED MAPS

PAUL E. LONG

Introduction. Professor John Jones, Jr., [3], introduces a semiconnected map \(f: X \to Y \) as one in which \(f^{-1} \) preserves closed connected subsets of \(Y \), and gives conditions under which a semiconnected map is continuous or is a homeomorphism. Theorem 1 of that paper is generalized here, and comparisons are made between semiconnected maps and other noncontinuous maps.

Among the several other well-known types of noncontinuous maps only the connected map and the connectivity map will be considered. A connected map \(f: X \to Y \) is one which preserves connected subsets of \(X \) and a connectivity map \(f: A \to F \) is one for which the induced graph map, \(g: X \to X \times Y \) defined by \(g(x) = (x, f(x)) \) for each \(x \in X \), is connected. It is easy to see that if \(f: X \to Y \) is continuous, then \(f \) is a connectivity map, and if a connectivity map, then also connected. Examples showing the reverse implications are not always valid may be found in [2]. The example \(f(x) = x^2 \) from the reals into the reals (usual topology in both cases) shows that continuous maps, hence connected and connectivity maps, need not be semiconnected. Furthermore, \(f(x) = x \) from the reals (usual topology) to the reals (discrete topology) is semiconnected but not connected, hence not a connectivity nor a continuous map.

Throughout, \(\overline{cl}(A) \) denotes the closure of the set \(A \).

Results. Theorem 1 generalizes Theorem 1 of [3].

Theorem 1. If \(f: X \to Y \) is semiconnected and onto the semi-locally-connected space \(Y \), then \(f \) is continuous.

Proof. Let \(P \subset F \) be open. It will be shown that \(f^{-1}(P) \) is open in \(X \). For each point \(b \in B \) there exists an open set \(V_b \subset B \) such that \(Y - V_b \) consists of a finite number of components \(C_1, C_2, \ldots, C_k \). Each \(C_j \) is closed and connected; hence \(f^{-1}(C_j) \) is closed and connected since \(f \) is semiconnected. Thus \(\bigcup_{j=1}^k f^{-1}(C_j) \) is closed and contains no point of \(f^{-1}(V_b) \) so that \(X - \bigcup_{j=1}^k f^{-1}(C_j) = R_b \) is an open set in \(X \) having the property that \(f(R_b) = V_b \). Consequently \(\bigcup_{b \in B} R_b \) is open in \(X \) and furthermore \(f^{-1}(B) = \bigcup_{b \in B} R_b \).

Theorem 2. Let \(f: X \to Y \) be a closed map where \(f^{-1}(y) \) is connected for each \(y \in Y \). Then if \(M \subset Y \) is connected, \(f^{-1}(M) \) is connected.

Received by the editors April 15, 1968.
Proof. Considering \(M \subset Y \) nondegenerate, suppose \(f^{-1}(M) = H \cup K \), separated. Then \(f(H) \cup f(K) = M \) and one of the sets, say \(f(H) \), has a limit point \(y_0 \) of the other, \(f(K) \) in this case. Since \(f^{-1}(y) \) is connected for each \(y \in Y \), \(f^{-1}(y_0) \subset H \) and furthermore \(f(H) \cap f(K) = \emptyset \). Consequently, because \(\text{cl}(K) \cap H = \emptyset \), \(y_0 \in f(\text{cl}(K)) \) which contradicts \(f \) being closed. The conclusion that \(f^{-1}(M) \) is connected follows.

Corollary 1. Let \(f : X \to Y \) be a closed semiconnected map where \(Y \) is \(T_1 \). Then if \(M \subset Y \) is any connected set, \(f^{-1}(M) \) is connected.

Corollary 2. Let \(f : X \to Y \) be a closed connected map where \(f^{-1}(y) \) is connected for each \(y \in Y \) and \(Y \) is \(T_1 \). Then \(f \) is semiconnected.

Proof. For any closed connected \(M \subset Y \), \(f^{-1}(M) \) is connected by Theorem 2. By [4] \(f^{-1}(M) \) is also closed and hence \(f \) is semiconnected.

Corollary 3. If \(f : X \to Y \) is a closed continuous map where \(f^{-1}(y) \) is connected for each \(y \in Y \), and \(Y \) is \(T_1 \), then \(f \) is semiconnected.

Theorem 3. Let \(f : X \to Y \) be continuous where \(f^{-1}(y) \) is connected for each \(y \in Y \), \(X \) is countably compact first countable and \(Y \) is \(T_1 \) first countable. Then \(f \) is semiconnected.

Proof. Let \(M \subset Y \) be closed and connected. Continuity of \(f \) insures \(f^{-1}(M) \) closed. It will now be shown that \(f^{-1}(M) \) is connected from which the conclusion that \(f \) is semiconnected follows.

Suppose \(f^{-1}(M) = H \cup K \), separated. Then \(f(H) \cup f(K) = M \) and one of these sets, say \(f(H) \), has a limit point \(y_0 \) of the other, \(f(K) \) in this instance. There exists a sequence of distinct points \(y_n \in f(K) \) such that \(y_n \to y_0 \) where \(f^{-1}(y_0) \subset H \) and \(f^{-1}(y_n) \subset K \) for each \(n \). Extracting \(x_n \in K \cap f^{-1}(y_n) \) for each \(n \), the set \(\{x_n\} \) has a limit point \(x_0 \in H \) since \(\text{cl}(K) \cap H = \emptyset \). Thus \(f(x_0) \neq y_0 \). Since \(X \) is first countable, there is a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(x_{n_k} \to x_0 \). But \(f(x_{n_k}) \to y_0 \neq f(x_0) \) contradicting continuity of \(f \) [1, Theorem 3.15, p. 102]. Thus \(f^{-1}(M) \) is connected.

References

University of Arkansas