ON THE COMPACTNESS OF THE STRUCTURE
SPACE OF A RING

WUHAN LEE

1. Introduction. N. Jacobson [2, p. 204] has shown that a topology can be defined on the set $S(A)$ of primitive ideals of any nonradical ring A. With this topology, $S(A)$ is called the structure space of A. The topology is given by defining closure: If $T = \{p\}$ is a set of primitive ideals then the closure of T, $\text{Cl } T$ is the set of primitive ideals which contain

$$DT = \bigcap\{P | P \subseteq T\}.$$

It is well known that if A has an identity element, then $S(A)$ is compact [2, p. 208]. Moreover, M. Schreiber [3] has observed that if every two-sided ideal of A is finitely generated, then $S(A)$ is again compact. Further, R. L. Blair and L. C. Eggen [1] have obtained a result for a class of rings consisting of those A such that

(C) no nonzero homomorphic image of A is a radical ring

stating that the structure space of such a ring is compact if and only if A is generated, as an ideal, by a finite number of elements.

The author found that for a certain class of rings, the modularity of the radical is both necessary and sufficient for the compactness of $S(A)$, and also that $S(A)$ is locally compact. For each $a \in A$, write (a) for the principal two-sided ideal generated by a, and let

$$U_a = \{P | P \supseteq (a)\}.$$

Then $\{U_a\}$, $a \in A$, is an open basis of the topology [3]. The author is interested in a ring A such that

(C') for every $a \in A$, DU_a is modular.

A two-sided ideal P is modular in the sense that there exists a two-sided identity modulo P.

2. Main results. Let A be a ring with the property that U_a is modular for every $a \in A$ (in this section).

Theorem 1. The structure space of A is compact if and only if the radical R of A is modular.

Proof. Suppose $S(A)$ is compact. Since $\{U_x\}$, $x \in A$, is an open

Received by the editors March 9, 1967.

191
cover, there exists a subcover \(\{ U_a \} \), \(a \in E \), where \(E \) is a finite subset of \(A \). Then

\[
DU \cup \bigcup_{a \in E} U_a = DS(A) = R
\]

since \(\bigcup_{a \in E} U_a = S(A) \). But

\[
DU \cup \bigcup_{x \in A} \bigcap_{a \in E} DU_a.
\]

Hence

\[
R \supset \bigcap_{a \in E} DU_a.
\]

By hypothesis, each \(DU_a, a \in E \), is modular. Then it follows that the radical \(R \) of \(A \) is modular since an intersection of a finite number of modular two-sided ideals is modular.

Conversely, suppose \(R \) is modular with an identity \(e \) modulo \(R \). Then \(A/R \) is clearly a ring with an identity. Since \(A/R \) has an identity, the structure space \(S(A/R) \) is compact. Hence it follows that \(S(A) \) is compact because \(S(A) \) is homeomorphic to \(S(A/R) \) by the corollary in [2, p. 205].

Theorem 2. The structure space of \(A \) is locally compact.

Proof. Let \(P \) be a point of \(S(A) \) and take \(U_a \) as an open neighborhood of \(P \). Since \(DU_a \) is modular, \(S(A/DU_a) \) is compact. Therefore its homeomorphic image \(\text{Cl } U_a \) is compact and thus \(S(A) \) is locally compact.

3. **Examples.** A biregular ring \(A \), in the sense that if \(a \in A \) then there exists a central idempotent element \(e \) such that \((a) = (e) \), satisfies the condition \((C')\), for it is easily seen that the element \(e \) is an identity modulo every primitive ideal that does not contain \((a)\). But the ring of integers satisfies the condition \((C')\) while it fails to be a biregular ring.

It is further investigated that the condition \((C')\) does not imply the condition \((C)\), and vice versa.

Example 1. Let \(B \) be a simple ring with an identity element and let \(R \) be a nonzero radical ring, and let \(A \) be the direct sum \(B \oplus R \). Then \(A \) has exactly one primitive ideal, namely, \(R \). Thus, for \(a \in A \), either

\[
DU_a = A \quad (\text{if } a \in R) \quad \text{or} \quad DU_a = R \quad (\text{if } a \notin R).
\]

In either case, \(DU_a \) is modular, so that \(A \) satisfies \((C')\). However, \(A/B \cong R \) is a radical ring, so \(A \) does not satisfy \((C)\).

Example 2. Let \(A \) be a simple ring without an identity element
and not a radical ring. Clearly A satisfies (C). The only primitive ideal is the zero ideal (0). If $a \in A$ with $a \neq 0$, then $DU_a = (0)$. Since A has no identity element, DU_a is not modular, so A does not satisfy (C').

Remarks. The author should like to express his thanks to the referee for his motivational suggestions.

References

Seoul National University