A NOTE ON CLOSED MAPS AND METRIZABILITY

D. M. HYMAN

1. Introduction. Investigating conditions under which quotients of metric spaces are metrizable, Stone [3] and Morita and Hanai [2] independently obtained the following result.

Theorem A. If a topological space Y is the closed, continuous image of a metric space, and if Y satisfies the first axiom of countability, then Y is metrizable.

The hypothesis of first-countability cannot be dropped. For example, if Y is the quotient space obtained from the real line \mathbb{R} by identifying the integers to a point, then the natural projection

$$\pi : \mathbb{R} \to Y$$

is closed and continuous, but Y is not metrizable. Notice that, although π is closed, the product map

$$\pi \times \pi : R \times R \to Y \times Y$$

is not closed. (For example, the set $\{(n, 1/n) | n = 2, 3, 4, \ldots \}$ is closed in $R \times R$ but its image in $Y \times Y$ is not closed.) In fact, by Theorem B below, $Y \times Y$ is not the closed, continuous image of any metric space.

Theorem B. If X and Y are nondiscrete topological spaces and if $X \times Y$ is the closed, continuous image of a metric space, then $X \times Y$ is metrizable.

We shall prove Theorem B, using Theorem A.

2. Semicanonical covers. Let \mathcal{U} be a collection of subsets of a set S. For each $W \subseteq S$, we define the star of W with respect to \mathcal{U} by

$$\text{st}(W, \mathcal{U}) = \bigcup \{ V \in \mathcal{U} : W \cap V \neq \emptyset \}. $$

A pair (Y, B) is a topological space Y together with a closed subset B. If Y is metrizable, then (Y, B) is called a metric pair.

Let (Y, B) be a pair. As in [1], we call a collection $\mathcal{U} = \{ V_\alpha \}$ of open subsets of Y a semicanonical cover for (Y, B) if

1. $\bigcup_\alpha V_\alpha = Y - B$, and
2. for each $b \in B$ and each neighborhood $^1 U$ of b in Y there exists
a neighborhood W of b in Y such that $\text{st}(W, \mathcal{U}) \subseteq U$.

If a semicanonical cover exists for (Y, B), we call (Y, B) a semicanonical pair.

Lemma 1. Every metric pair (Y, B) is semicanonical.

Proof. Let d be a metric for Y. For each $y \in Y - B$, let $V_y = \{x \in Y | d(x, y) < \frac{1}{2}d(y, B)\}$. Then the collection $\{V_y | y \in Y - B\}$ is a semicanonical cover for (Y, B).

Lemma 2. Let \mathcal{U} be a semicanonical cover for a pair (Y, B), and let $C \subseteq B$. If U is a neighborhood of C in Y, then there exists a neighborhood W of C in Y such that $\text{st}(W, \mathcal{U}) \subseteq U$.

Proof. Each $x \in C$ has a neighborhood W_x in Y such that $\text{st}(W_x, \mathcal{U}) \subseteq U$. Take $W = \bigcup_{x \in C} W_x$.

Suppose $f : X \rightarrow Y$ is a continuous closed surjection. A set $T \subseteq X$ is said to be saturated if $f^{-1}(f(T)) = T$. If $U \subseteq X$ is a neighborhood of a saturated set T, then there exists a saturated neighborhood V of T such that $V \subseteq U$. {Proof: Take $V = f^{-1}(Y - f(X - U))$.}

Lemma 3. Let $f : X \rightarrow Y$ be a continuous closed surjection, and suppose that B is a closed subset of Y. If $(X, f^{-1}(B))$ is a semicanonical pair, then (Y, B) is a semicanonical pair.

Proof. Let $A = f^{-1}(B)$, and let \mathcal{U} be a semicanonical cover for (X, A). For each $y \in Y - B$, let G_y be a saturated neighborhood of $f^{-1}(y)$ in X such that

$$(1) \quad G_y \subseteq \text{st}(f^{-1}(y), \mathcal{U}).$$

We shall show that

$$\mathcal{G} = \{f(G_y) | y \in Y - B\}$$

is a semicanonical cover for $Y - B$. Since f is a closed surjection and since G_y is open and saturated, $f(G_y)$ is open in Y, and it is obvious that

$$Y - B = \bigcup f(G_y) | y \in Y - B\}.$$

It remains to show that if $b \in B$ and if U is a neighborhood of b in Y, then there exists a neighborhood U_0 of b such that $\text{st}(U_0, \mathcal{G}) \subseteq U$. By Lemma 2, $f^{-1}(b)$ has a neighborhood W in X such that $\text{st}(W, \mathcal{U}) \subseteq f^{-1}(U)$. Since f is a continuous closed surjection, we may choose W to be saturated. Similarly, there exists a saturated neighborhood W_0 of $f^{-1}(b)$ in X such that $\text{st}(W_0, \mathcal{U}) \subseteq W$. The set $U_0 = f(W_0)$ is a neighborhood of b in Y. We claim that $\text{st}(U_0, \mathcal{G}) \subseteq U$. For suppose that
Then, since \(G_y \) and \(W_0 \) are saturated and \(f \) is surjective,

\[
 (2) \quad G_y \cap W_0 \neq \emptyset.
\]

By (1) and (2), there exist a point \(x \in f^{-1}(y) \) and a \(V \in \mathcal{U} \) such that \(x \in V \) and \(V \cap W_0 \neq \emptyset \). Since \(st(W_0, \mathcal{U}) \subseteq W \),

\[
 (3) \quad V \subseteq W.
\]

Because \(W \) is saturated and \(x \in f^{-1}(y) \cap V \), it follows from (3) that \(f^{-1}(y) \subseteq W \). Since \(st(W, \mathcal{U}) \subseteq f^{-1}(U) \), we have in particular

\[
 (4) \quad st(f^{-1}(y), \mathcal{U}) \subseteq f^{-1}(U).
\]

It follows from (4) and (1) that \(f(G_y) \subseteq U \). Therefore, \(st(U_0, g) \subseteq U \), and the proof is complete.

3. Proof of Theorem B. Suppose \(f: M \to XX Y \) is a continuous closed surjection, where \(M \) is metrizable. Since \(XX F \) is homeomorphic to a closed subset of \(XX Y \), it follows that \(XX Y \) is the image of a metric space under a continuous closed surjection. Consequently, if \(y^* \) is an accumulation point of \(XX F \), then there exists a sequence \(y_1, y_2, \ldots \) in \(XX Y - \{ y^* \} \) such that

\[
 (1) \quad \lim_{n \to \infty} y_n = y^*.
\]

We shall show that \(XX F \) is first-countable. Let \(x \in XX F \). By Lemmas 1 and 3, \((XX Y, XX Y - \{ y^* \}) \) is a semicanonical pair; let \(\mathcal{V} \) be a semicanonical cover for it. For each positive integer \(n \), choose \(V_n \in \mathcal{V} \) such that \((x, y_n) \in V_n \). Define \(U_n = \pi(V_n) \), where \(\pi: XX Y \to XX X \) is the coordinate projection. We claim that \(\{ U_n \mid n \geq 1 \} \) is a basis for the neighborhoods of \(x \) in \(XX X \). To show this, let \(U \) be a neighborhood of \(x \) in \(XX X \), and let \(W \) be a neighborhood of \((x, y^*) \) in \(XX Y \) such that \(st(W, \mathcal{V}) \subseteq \pi^{-1}(U) \). It follows from (1) that there exists an integer \(n \) such that \(W \cap V_n \neq \emptyset \). Therefore \(V_n \subseteq \pi^{-1}(U) \), and this implies that \(U_n \subseteq U \).

It follows that \(XX X \) is first-countable.

Similarly, \(YY Y \) is first-countable. Therefore \(XX XYY \) is first-countable, and, by Theorem A, metrizable.

Corollary. Let \(f: M \to XX Y \) be a continuous closed surjection, where \(M \) and \(YY Y \) are metrizable and \(YY Y \) is not discrete. Then \(XX Y \) is metrizable.

Proof. If \(XX X \) is discrete, then it is metrizable, and therefore \(XX Y \) is metrizable. If \(XX X \) is not discrete, the result follows from Theorem B.
REFERENCES

University of Southern California