On sequential cores and a theorem of R. R. Phelps
HTML articles powered by AMS MathViewer
- by R. Atalla and J. Bustoz
- Proc. Amer. Math. Soc. 21 (1969), 36-42
- DOI: https://doi.org/10.1090/S0002-9939-1969-0243357-X
- PDF | Request permission
References
- Ralph Palmer Agnew, Cores of Complex Sequences and of Their Transforms, Amer. J. Math. 61 (1939), no. 1, 178–186. MR 1507948, DOI 10.2307/2371398
- H. S. Allen, $T$-transformations which leave the core of every bounded sequence invariant, J. London Math. Soc. 19 (1944), 42–46. MR 11332, DOI 10.1112/jlms/19.73_{P}art_{1}.42 J. Bustoz, Gibbs sets and the generalized Gibbs phenomenon, Dissertation, Arizona State University, 1967.
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Kenneth Hoffman, Fundamentals of Banach algebras, Instituto de Matemática da Universidade do Paraná, Curitiba, 1962. MR 0158278
- R. R. Phelps, The range of $Tf$ for certain linear operators $T$, Proc. Amer. Math. Soc. 16 (1965), 381–382. MR 178360, DOI 10.1090/S0002-9939-1965-0178360-8
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 21 (1969), 36-42
- MSC: Primary 46.55; Secondary 40.00
- DOI: https://doi.org/10.1090/S0002-9939-1969-0243357-X
- MathSciNet review: 0243357