REAL REPRESENTATIONS OF METACYCLIC GROUPS

LARRY C. GROVE

Problem 14 in R. Brauer's survey article Representations of finite groups [1] asks for a characterization of the number of irreducible complex representations of a group G that are equivalent to representations over the real field \mathbb{R}. The question is answered here for a class of metacyclic groups, the answer being an arithmetic function of the parameters that appear in presentations of the groups.

Suppose G is a metacyclic group having a cyclic normal subgroup $A = \langle a \rangle$ of order m and cyclic quotient group $G/A = \langle bA \rangle$ of order s, with $b^{-1}ab = a^r$ and $b^t = a^t$, $1 \leq r \leq m-1$, $0 \leq t \leq m-1$. Then by [2, p. 334], we have

$$(m, r) = 1, \quad tr \equiv t(\text{mod } m), \quad \text{and } \quad r^* = 1(\text{mod } m).$$

For later use we set $d = (m, t, r^{s+1})$ when s is even.

If $\xi \in \mathbb{C}$ is a primitive mth root of unity then all irreducible complex characters of A are obtained by setting $\phi_i(a) = \xi^i$, $i = 0, \ldots, m-1$. Each ϕ_i gives rise to an induced character $\theta_i = \phi_i^G$ of G, and we wish to investigate which of the irreducible characters among the θ_i are characters of representations over \mathbb{R}. The induced character θ_i is defined by the formula

$$\theta_i(x) = \left(\frac{1}{m}\right) \sum_{t \in \mathbb{Z}} \phi_i(t^{-1}xt) \quad \text{if } x \in A,$$

$$= 0 \quad \text{if } x \notin A.$$

Let us compute θ_i more explicitly. We have in general $b^{-i}ab^i = a^t$, and so

$$\theta_i(a^n) = \left(\frac{1}{m}\right) \sum_{j=0}^{s-1} \sum_{k=0}^{m-1} \phi_i(a^{-k}b^{-i}a^nb^{ik})$$

$$= \sum_{j=0}^{s-1} \phi_i(b^{-i}ab^i)^n = \sum_{j=0}^{s-1} \xi^{tn}.$$

For each θ_i set $\nu(\theta_i) = (1/ms) \sum_{x \in G} \theta_i(x^2)$. If θ_i is irreducible then $\nu(\theta_i) = 1$ if and only if θ_i is the character of a real representation, by the Theorem of Frobenius and Schur [3, p. 22].

PROPOSITION 1. Suppose s is odd. Then $\nu(\theta_i) = 0$ for every irreducible θ_i, and so no irreducible θ_i is the character of a real representation.

Received by the editors July 15, 1968.

417
Proof. We have \((b^ka^n)^2 = b^{2k}a^{n(r^k + 1)}\), so \((b^ka^n)^2 \in A\) if and only if \(s \mid k\), since \(s\) is odd. We may assume \(0 \leq k \leq s-1\) and still obtain all elements of \(G\) in the form \(b^ka^n\), so \((b^ka^n)^2 \in A\) if and only if \(k = 0\). Thus

\[
\nu(\theta_i) = (1/ms) \sum_{k=0}^{s-1} \sum_{n=0}^{m-1} \theta_i(b^{2k}a^{n(r^k + 1)})
\]

\[
= (1/ms) \sum_{n=0}^{m-1} \theta_i(a^{2n}) = (1/ms) \sum_{n=0}^{m-1} \sum_{j=0}^{s-1} \xi^{2nirr}
\]

\[
= (1/ms) \sum_j \sum_n (\xi^{2ir})^n.
\]

If \(m \mid 2i\), then \(m \mid 2ir\) since \((m, r) = 1\), and then \(\sum_n (\xi^{2ir})^n = (1 - \xi^{2irm})/(1 - \xi^{2ir}) = 0\), and so \(\nu(\theta_i) = 0\). If \(m \nmid 2i\), then either \(i = 0\) or \(i = m/2\), with \(m\) even. In either case each summand is 1, so \(\nu(\theta_i) = 1\). Observe, however, that if \(m\) is even then \(r - 1\) is even, and we have \(m \mid (m/2)(r - 1)\). Thus \(\theta_i\) is reducible if \(i = m/2\) (see [2, p. 335]). Likewise \(\theta_i\) is reducible if \(i = 0\), and the proof is complete.

In view of Proposition 1 we suppose from this point on that \(s\) is even.

Theorem 1. If \(\theta_i\) is irreducible, then \(\nu(\theta_i) = 1\) if and only if \(i \equiv 0 (mod m/d)\).

Proof. We have \(\theta_i((b^ka^n)^2) = \theta_i(b^{2k}a^{n(r^k + 1)}) = 0\) unless \(k = 0\) or \(k = s/2\). Thus

\[
\nu(\theta_i) = (1/ms) \sum_{n=0}^{m-1} \left[\theta_i(a^{2n}) + \theta_i(a^{s+n(r^{s/2} + 1)}) \right]
\]

\[
= (1/ms) \sum_n \left[\sum_{j=0}^{s-1} \xi^{2nir} + \sum_{j=0}^{s-1} \xi^{nir(r^{s/2} + 1) + irr} \right].
\]

Since \(tr \equiv t (mod m)\) we have \(tr' \equiv t (mod m)\), and so \(\xi^ir' = \xi^i\). Observe that

\[
\sum_{n=0}^{m-1} (\xi^{2ir})^n = m \quad \text{if } m \mid 2i,
\]

\[
= 0 \quad \text{if } m \nmid 2i,
\]

and that

\[
\sum_{n=0}^{m-1} \xi^i(\xi^{ir'(r^{s/2} + 1)})^n = m\xi^i \quad \text{if } m \mid i(r^{s/2} + 1),
\]

\[
= 0 \quad \text{if } m \nmid i(r^{s/2} + 1).
\]

Thus \(\nu(\theta_i) = B + D\xi^i\), where
But \(m \mid 2i \) only if \(i = m/2 \), with \(m \) even, and in that case \(\theta_i \) is reducible, as shown above. Thus \(B = 0 \) and \(\nu(\theta_i) = 1 \) if and only if \(D = \xi^{it} = 1 \), i.e. if and only if \(m \mid i(r^{it}/2 + 1) \) and \(m \mid it \).

In other words, we want all common solutions to the pair of congruences \(i(r^{it}/2 + 1) \equiv 0 \pmod{m} \), \(it \equiv 0 \pmod{m} \) in the range \(1 \leq i \leq m - 1 \). Since \(it \equiv 0 \pmod{m} \) if and only if \(i \equiv 0 \pmod{m/(m, t)} \), and \(i(r^{it}/2 + 1) \equiv 0 \pmod{m} \) if and only if \(i \equiv 0 \pmod{m/(m, r^{it}/2 + 1)} \), we have a common solution if and only if

\[
i \equiv 0 \pmod{\left[m/(m, t), m/(m, r^{it}/2 + 1) \right]}.
\]

But \(\left[m/(m, t), m/(m, r^{it}/2 + 1) \right] = m/d \), so we have shown that \(\nu(\theta_i) = 1 \) if and only if \(i \equiv 0 \pmod{m/d} \).

Let us restate the original question in the light of Theorem 1. For each \(k, 1 \leq k \leq d - 1 \), set \(\psi_k = \theta_{km/d} \). We wish to determine which of the characters \(\psi_k \) are irreducible and which ones are equal to one another, and then to count the distinct irreducible \(\psi_k \).

Proposition 2. The character \(\psi_k \) is reducible if and only if \(kr^i \equiv k \pmod{d} \) for some \(j, 1 \leq j \leq s - 1 \).

Proof. It is shown in [2, p. 335] that \(\psi_k \) is reducible if and only if \(m \mid km(r^i - 1)/d \) for some such \(j \), and that is equivalent with the stated proposition.

Similarly, we have

Proposition 3. \(\psi_k = \psi_n \) if and only if \(kr^i \equiv n \pmod{d} \) for some \(j, 1 \leq j \leq s - 1 \).

Those metacyclic groups all of whose irreducible characters are either one dimensional or else among the characters \(\theta_i \) are characterized in [2, p. 336]. We are now in a position to answer Brauer's question for such groups.

Theorem 2. Suppose that \(G \) is metacyclic and that all nonlinear irreducible characters of \(G \) are induced from the cyclic subgroup \(A \). If \(s \) is even then \(G \) has exactly \((d - (d, r - 1))/s\) inequivalent absolutely irreducible nonlinear representations over the real field \(\mathbb{R} \). If \(s \) is odd, then \(G \) has no absolutely irreducible nonlinear representations over \(\mathbb{R} \).

Proof. The case where \(s \) is odd is covered by Proposition 1. Suppose then that \(s \) is even. By [2, p. 336] we know that if \(r^i \equiv i \pmod{m} \),
with \(1 \leq j \leq s-1\), then \(ri \equiv i \pmod{m}\). Set \(Y = \{1, 2, \ldots, d\}\), and define \(\beta: Y \to Y\) by setting \(\beta(k) = r^j k \pmod{d}\). Since \((r, d) = 1\), \(\beta\) is a permutation of \(Y\). Since \(r^s = 1 \pmod{d}\) the order of \(\beta\) divides \(s\). Note that if \(\beta'(k) = r^j k = k\) in the integers mod \(d\), then in fact \(\beta(k) = k\), if \(j \leq s-1\). It follows that the orbits of \(\beta\) in \(Y\) have either one or \(s\) elements. It is clear from Propositions 2 and 3 that \(\psi_k\) is reducible if and only if \(\{k\}\) is a one-element orbit, and that \(\psi_k = \psi_{k'}\) if and only if \(k\) and \(k'\) are in the same orbit. But \(\{k\}\) is an orbit if and only if \(d \mid k(r-1)\), i.e. if and only if

\[
 k = \frac{d}{(d, r - 1)}, \frac{2d}{(d, r - 1)}, \ldots, d = (d, r - 1)\frac{d}{(d, r - 1)}.
\]

Thus the number of \(s\)-element orbits, and hence the number of \(\psi_k\) that are characters of real representations, is \((d - (d, r - 1))/s\).

Remark. Note that \(r^n + 1 = (r - 1) \sum_{i=0}^{n-1} r^i + (r+1)\). Thus for \(n \geq 1\) we have

\[
 (r - 1, r^n + 1) = (r - 1, r + 1) = 1 \quad \text{if } r \text{ is even},
\]

\[
 = 2 \quad \text{if } r \text{ is odd}.
\]

As a result \((d, r - 1) = (m, t, r + 1, r - 1) = 2\) if \(r\) is odd and \(m\) and \(t\) are both even, and \((d, r - 1) = 1\) in all other cases.

Let us consider Theorem 2 for two particular examples.

1. The dihedral group \(D_m\) of order \(2m\) is metacyclic, with \(s = 2\), \(t = 0\), and \(r = m - 1\). Thus \(d = (m, m) = m\), and \((d, r - 1) = 2\) if \(m\) is even, \(= 1\) if \(m\) is odd. We conclude that \(D_m\) has \((m - 2)/2\) nonlinear absolutely irreducible real representations if \(m\) is even, and \((m - 1)/2\) if \(m\) is odd.

2. The generalized quaternion group \(Q_n\) of order \(4n\) is metacyclic, with \(m = 2n\), \(s = 2\), \(t = n\), and \(r = 2n - 1\). Then \(d = (2n, n, 2n) = n\), and \((d, r - 1) = 1\) if \(n\) is odd, \(= 2\) if \(n\) is even. Thus \(Q_n\) has \((n - 1)/2\) nonlinear absolutely irreducible real representations if \(n\) is odd, and \((n - 2)/2\) if \(n\) is even.

Corollary to Theorem 2. Suppose \(G\) is a finite nonabelian group having a cyclic subgroup of index 2. Then all nonlinear irreducible complex representations of \(G\) are equivalent with real representations if and only if \(G\) is a dihedral group \(D_m\).

The proof will be omitted. The referee has pointed out that the conclusion of the corollary holds under the hypotheses that \([G: \langle a \rangle] = 2\) and \(G\) has an absolutely irreducible faithful nonlinear representation over \(R\).

I wish to thank C. T. Benson and C. W. Curtis for a number of fruitful conversations regarding this material.
REFERENCES

UNIVERSITY OF OREGON