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Theorem. If B is a Banach algebra which is also a nil algebra, then

B is a nilpotent algebra.

Proof. For each positive integer j, define

Nj = {xQB:x' = 0}.

By the theorem of Nagata-Higman [l, p. 274], it will be enough to

show that some N¡ = B. Each N¡ is closed and the union of the N¡

is P. Hence, by the Baire Category Theorem, there is a fixed integer

k and a fixed zQB for which Nk is a neighborhood of z. Suppose

xQB. Define the B valued polynomial of a scalar variable /, p(t)

= (z+t(x — z))k. Since z+t(x — z) is continuous, p(t) must equal zero

for all sufficiently small /. Therefore, p(t) = 0; and, in particular p(\)

= x* = 0. This completes the proof.

It is easy to construct examples of normed algebras for which the

above theorem is false, though the theorem is true for second cate-

gory topological algebras.
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